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2 esSim

esSim An ExpressionSet Object Storing Simulated Genotype Data

Description

An ExpressionSet object storing simulated genotype data. The minor allele frequency (MAF) of
cases has the same prior as that of controls.

Usage

data("esSim")

Details

In this simulation, we generate additive-coded genotypes for 3 clusters of SNPs based on a mixture
of 3 Bayesian hierarchical models.

In cluster +, the minor allele frequency (MAF) θx+ of cases is greater than the MAF θy+ of controls.

In cluster 0, the MAF θ0 of cases is equal to the MAF of controls.

In cluster −, the MAF θx− of cases is smaller than the MAF θy− of controls.

The proportions of the 3 clusters of SNPs are π+, π0, and π−, respectively.

We assume a “half-flat shape” bivariate prior for the MAF in cluster +

2h+ (θx+)h+ (θy+) I (θx+ > θy+) ,

where I(a) is hte indicator function taking value 1 if the event a is true, and value 0 otherwise. The
function h+ is the probability density function of the beta distribution Beta (α+, β+).

We assume θ0 has the beta prior Beta(α0, β0).

We also assume a “half-flat shape” bivariate prior for the MAF in cluster −

2h− (θx−)h− (θy−) I (θx− > θy−) .

The function h− is the probability density function of the beta distribution Beta (α−, β−).

Given a SNP, we assume Hardy-Weinberg equilibrium holds for its genotypes. That is, given MAF
θ, the probabilities of genotypes are

Pr(geno = 2) = θ2

Pr(geno = 1) = 2θ (1− θ)

Pr(geno = 0) = (1− θ)
2

We also assume the genotypes 0 (wild-type), 1 (heterozygote), and 2 (mutation) follows a multino-
mial distribution Multinomial

{
1,
[
θ2, 2θ (1− θ) , (1− θ)

2
]}

We set the number of cases as 100, the number of controls as 100, and the number of SNPs as 1000.

The hyperparameters are α+ = 2, β+ = 5, π+ = 0.1, α0 = 2, β0 = 5, π0 = 0.8, α− = 2, β− = 5,
π− = 0.1.
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Note that when we generate MAFs from the half-flat shape bivariate priors, we might get very small
MAFs or get MAFs > 0.5. In these cased, we then delete this SNP.

So the final number of SNPs generated might be less than the initially-set number 1000 of SNPs.

For the dataset stored in esSim, there are 872 SNPs. 83 SNPs are in cluster -, 714 SNPs are in
cluster 0, and 75 SNPs are in cluster +.

References

Yan X, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated
SNPs in case-control genome-wide association studies. Scientific Reports 9, Article number: 13686
(2019) https://www.nature.com/articles/s41598-019-50229-6.

Examples

data(esSim)
print(esSim)

pDat=pData(esSim)
print(pDat[1:2,])
print(table(pDat$memSubjs))

fDat=fData(esSim)
print(fDat[1:2,])
print(table(fDat$memGenes))
print(table(fDat$memGenes2))

esSimDiffPriors An ExpressionSet Object Storing Simulated Genotype Data

Description

An ExpressionSet object storing simulated genotype data. The minor allele frequency (MAF) of
cases has different prior than that of controls.

Usage

data("esSimDiffPriors")

Details

In this simulation, we generate additive-coded genotypes for 3 clusters of SNPs based on a mixture
of 3 Bayesian hierarchical models.

In cluster +, the minor allele frequency (MAF) θx+ of cases is greater than the MAF θy+ of controls.

In cluster 0, the MAF θ0 of cases is equal to the MAF of controls.

In cluster −, the MAF θx− of cases is smaller than the MAF θy− of controls.

The proportions of the 3 clusters of SNPs are π+, π0, and π−, respectively.
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We assume a “half-flat shape” bivariate prior for the MAF in cluster +

2hx+ (θx+)hy+ (θy+) I (θx+ > θy+) ,

where I(a) is hte indicator function taking value 1 if the event a is true, and value 0 otherwise.
The function hx+ is the probability density function of the beta distribution Beta (αx+, βx+). The
function hy+ is the probability density function of the beta distribution Beta (αy+, βy+).

We assume θ0 has the beta prior Beta(α0, β0).

We also assume a “half-flat shape” bivariate prior for the MAF in cluster −

2hx− (θx−)hy− (θy−) I (θx− > θy−) .

The function hx− is the probability density function of the beta distribution Beta (αx−, βx−). The
function hy− is the probability density function of the beta distribution Beta (αy−, βy−).

Given a SNP, we assume Hardy-Weinberg equilibrium holds for its genotypes. That is, given MAF
θ, the probabilities of genotypes are

Pr(geno = 2) = θ2

Pr(geno = 1) = 2θ (1− θ)

Pr(geno = 0) = (1− θ)
2

We also assume the genotypes 0 (wild-type), 1 (heterozygote), and 2 (mutation) follows a multino-
mial distribution Multinomial

{
1,
[
θ2, 2θ (1− θ) , (1− θ)

2
]}

We set the number of cases as 100, the number of controls as 100, and the number of SNPs as 1000.

The hyperparameters are αx+ = 2, βx+ = 3, αy+ = 2, βy+ = 8, π+ = 0.1,

α0 = 2, β0 = 5, π0 = 0.8,

αx− = 2, βx− = 8, αy− = 2, βy− = 3, π− = 0.1.

Note that when we generate MAFs from the half-flat shape bivariate priors, we might get very small
MAFs or get MAFs > 0.5. In these cased, we then delete this SNP.

So the final number of SNPs generated might be less than the initially-set number 1000 of SNPs.

For the dataset stored in esSim, there are 838 SNPs. 64 SNPs are in cluster -, 708 SNPs are in
cluster 0, and 66 SNPs are in cluster +.

References

Yan X, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated
SNPs in case-control genome-wide association studies. Scientific Reports 9, Article number: 13686
(2019) https://www.nature.com/articles/s41598-019-50229-6.

Examples

data(esSimDiffPriors)
print(esSimDiffPriors)

pDat=pData(esSimDiffPriors)
print(pDat[1:2,])
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print(table(pDat$memSubjs))

fDat=fData(esSimDiffPriors)
print(fDat[1:2,])
print(table(fDat$memGenes))
print(table(fDat$memGenes2))

estMemSNPs Estimate SNP cluster membership

Description

Estimate SNP cluster membership. Only update cluster mixture proportions. Assume the 3 clusters
have different sets of hyperparameters.

Usage

estMemSNPs(es,
var.memSubjs = "memSubjs",
eps = 0.001,
MaxIter = 50,
bVec = rep(3, 3),
pvalAdjMethod = "fdr",
method = "FDR",
fdr = 0.05,
verbose = FALSE)

Arguments

es An ExpressionSet object storing SNP genotype data. It contains 3 matrices. The
first matrix, which can be extracted by exprs method (e.g., exprs(es)), stores
genotype data, with rows are SNPs and columns are subjects.
The second matrix, which can be extracted by pData method (e.g., pData(es)),
stores phenotype data describing subjects. Rows are subjects, and columns are
phenotype variables.
The third matrix, which can be extracted by fData method (e.g., fData(es)),
stores feature data describing SNPs. Rows are SNPs and columns are feature
variables.

var.memSubjs character. The name of the phenotype variable indicating subject’s case-control
status. It must take only two values: 1 indicating case and 0 indicating control.

eps numeric. A small positive number as threshold for convergence of EM algo-
rithm.

MaxIter integer. A positive integer indicating maximum iteration in EM algorithm.

bVec numeric. A vector of 2 elements. Indicates the parameters of the symmetric
Dirichlet prior for proportion mixtures.

pvalAdjMethod character. Indicating p-value adjustment method. c.f. p.adjust.
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method method to obtain SNP cluster membership based on the responsibility matrix.
The default value is “FDR”. The other possible value is “max”. see details.

fdr numeric. A small positive FDR threshold used to call SNP cluster membership

verbose logical. Indicating if intermediate and final results should be output.

Details

In this simulation, we generate additive-coded genotypes for 3 clusters of SNPs based on a mixture
of 3 Bayesian hierarchical models.

In cluster +, the minor allele frequency (MAF) θx+ of cases is greater than the MAF θy+ of controls.

In cluster 0, the MAF θ0 of cases is equal to the MAF of controls.

In cluster −, the MAF θx− of cases is smaller than the MAF θy− of controls.

The proportions of the 3 clusters of SNPs are π+, π0, and π−, respectively.

We assume a “half-flat shape” bivariate prior for the MAF in cluster +

2h+ (θx+)h+ (θy+) I (θx+ > θy+) ,

where I(a) is hte indicator function taking value 1 if the event a is true, and value 0 otherwise. The
function h+ is the probability density function of the beta distribution Beta (α+, β+).

We assume θ0 has the beta prior Beta(α0, β0).

We also assume a “half-flat shape” bivariate prior for the MAF in cluster −

2h− (θx−)h− (θy−) I (θx− > θy−) .

The function h− is the probability density function of the beta distribution Beta (α−, β−).

Given a SNP, we assume Hardy-Weinberg equilibrium holds for its genotypes. That is, given MAF
θ, the probabilities of genotypes are

Pr(geno = 2) = θ2

Pr(geno = 1) = 2θ (1− θ)

Pr(geno = 0) = (1− θ)
2

We also assume the genotypes 0 (wild-type), 1 (heterozygote), and 2 (mutation) follows a multino-
mial distribution Multinomial

{
1,
[
θ2, 2θ (1− θ) , (1− θ)

2
]}

For each SNP, we calculat its posterior probabilities that it belongs to cluster k. This forms a matrix
with 3 columns. Rows are SNPs. The 1st column is the posterior probability that the SNP belongs
to cluster −. The 2nd column is the posterior probability that the SNP belongs to cluster 0. The
3rd column is the posterior probability that the SNP belongs to cluster +. We call this posterior
probability matrix as responsibility matrix. To determine which cluster a SNP eventually belongs
to, we can use 2 methods. The first method (the default method) is “FDR” method, which will
use FDR criterion to determine SNP cluster membership. The 2nd method is use the maximum
posterior probability to decide which cluster a SNP belongs to.
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Value

A list of 12 elements

wMat matrix of posterior probabilities. The rows are SNPs. There are 3 columns. The
first column is the posterior probability that a SNP belongs to cluster - given
genotypes of subjects. The second column is the posterior probability that a
SNP belongs to cluster 0 given genotypes of subjects. The third column is the
posterior probability that a SNP belongs to cluster + given genotypes of subjects.

memSNPs a vector of SNP cluster membership for the 3-cluster partitionfrom the mixture
of 3 Bayesian hierarchical models.

memSNPs2 a vector of binary SNP cluster membership. 1 indicates the SNP has different
MAFs between cases and controls. 0 indicates the SNP has the same MAF in
cases as that in controls.

piVec a vector of cluster mixture proportions.

alpha.p the first shape parameter of the beta prior for MAF obtaind from initial 3-cluster
partitions based on GWAS for cluster +.

beta.p the second shape parameter of the beta prior for MAF obtaind from initial 3-
cluster partitions based on GWAS for cluster +.

alpha0 the first shape parameter of the beta prior for MAF obtaind from initial 3-cluster
partitions based on GWAS for cluster 0.

beta0 the second shape parameter of the beta prior for MAF obtaind from initial 3-
cluster partitions based on GWAS for cluster 0.

alpha.n the first shape parameter of the beta prior for MAF obtaind from initial 3-cluster
partitions based on GWAS for cluster -.

beta.n the second shape parameter of the beta prior for MAF obtaind from initial 3-
cluster partitions based on GWAS for cluster -.

loop number of iteration in EM algorithm

diff sum of the squared difference of cluster mixture proportions between current
iteration and previous iteration in EM algorithm. if eps < eps, we claim the EM
algorithm converges.

res.limma object returned by limma

Author(s)

Yan Xu <yanxu@uvic.ca>, Li Xing <sfulxing@gmail.com>, Jessica Su <rejas@channing.harvard.edu>,
Xuekui Zhang <xuekui@uvic.ca>, Weiliang Qiu <Weiliang.Qiu@gmail.com>

References

Yan X, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated
SNPs in case-control genome-wide association studies. Scientific Reports 9, Article number: 13686
(2019) https://www.nature.com/articles/s41598-019-50229-6.
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Examples

data(esSimDiffPriors)
print(esSimDiffPriors)

es=esSimDiffPriors[1:500,]
fDat = fData(es)
print(fDat[1:2,])
print(table(fDat$memGenes))

res = estMemSNPs(
es = es,
var.memSubjs = "memSubjs")

print(table(fDat$memGenes, res$memSNPs))

estMemSNPs.oneSetHyperPara

Estimate SNP cluster membership

Description

Estimate SNP cluster membership. Only update cluster mixture proportions. Assume all 3 clusters
have the same set of hyperparameters.

Usage

estMemSNPs.oneSetHyperPara(es,
var.memSubjs = "memSubjs",
eps = 1.0e-3,
MaxIter = 50,
bVec = rep(3, 3),
pvalAdjMethod = "none",
method = "FDR",
fdr = 0.05,
verbose = FALSE)

Arguments

es An ExpressionSet object storing SNP genotype data. It contains 3 matrices. The
first matrix, which can be extracted by exprs method (e.g., exprs(es)), stores
genotype data, with rows are SNPs and columns are subjects.
The second matrix, which can be extracted by pData method (e.g., pData(es)),
stores phenotype data describing subjects. Rows are subjects, and columns are
phenotype variables.
The third matrix, which can be extracted by fData method (e.g., fData(es)),
stores feature data describing SNPs. Rows are SNPs and columns are feature
variables.
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var.memSubjs character. The name of the phenotype variable indicating subject’s case-control
status. It must take only two values: 1 indicating case and 0 indicating control.

eps numeric. A small positive number as threshold for convergence of EM algo-
rithm.

MaxIter integer. A positive integer indicating maximum iteration in EM algorithm.

bVec numeric. A vector of 2 elements. Indicates the parameters of the symmetric
Dirichlet prior for proportion mixtures.

pvalAdjMethod character. Indicating p-value adjustment method. c.f. p.adjust.

method method to obtain SNP cluster membership based on the responsibility matrix.
The default value is “FDR”. The other possible value is “max”. see details.

fdr numeric. A small positive FDR threshold used to call SNP cluster membership

verbose logical. Indicating if intermediate and final results should be output.

Details

We characterize the distribution of genotypes of SNPs by a mixture of 3 Bayesian hierarchical
models. The 3 Bayeisan hierarchical models correspond to 3 clusters of SNPs.

In cluster +, the minor allele frequency (MAF) θx+ of cases is greater than the MAF θy+ of controls.

In cluster 0, the MAF θ0 of cases is equal to the MAF of controls.

In cluster −, the MAF θx− of cases is smaller than the MAF θy− of controls.

The proportions of the 3 clusters of SNPs are π+, π0, and π−, respectively.

We assume a “half-flat shape” bivariate prior for the MAF in cluster +

2h (θx+)h (θy+) I (θx+ > θy+) ,

where I(a) is hte indicator function taking value 1 if the event a is true, and value 0 otherwise. The
function h is the probability density function of the beta distribution Beta (α, β).

We assume θ0 has the beta prior Beta(α, β).

We also assume a “half-flat shape” bivariate prior for the MAF in cluster −

2h (θx−)h (θy−) I (θx− > θy−) .

Given a SNP, we assume Hardy-Weinberg equilibrium holds for its genotypes. That is, given MAF
θ, the probabilities of genotypes are

Pr(geno = 2) = θ2

Pr(geno = 1) = 2θ (1− θ)

Pr(geno = 0) = (1− θ)
2

We also assume the genotypes 0 (wild-type), 1 (heterozygote), and 2 (mutation) follows a multino-
mial distribution Multinomial

{
1,
[
θ2, 2θ (1− θ) , (1− θ)

2
]}

For each SNP, we calculat its posterior probabilities that it belongs to cluster k. This forms a matrix
with 3 columns. Rows are SNPs. The 1st column is the posterior probability that the SNP belongs
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to cluster −. The 2nd column is the posterior probability that the SNP belongs to cluster 0. The
3rd column is the posterior probability that the SNP belongs to cluster +. We call this posterior
probability matrix as responsibility matrix. To determine which cluster a SNP eventually belongs
to, we can use 2 methods. The first method (the default method) is “FDR” method, which will
use FDR criterion to determine SNP cluster membership. The 2nd method is use the maximum
posterior probability to decide which cluster a SNP belongs to.

Value

A list of 10 elements

wMat matrix of posterior probabilities. The rows are SNPs. There are 3 columns. The
first column is the posterior probability that a SNP belongs to cluster - given
genotypes of subjects. The second column is the posterior probability that a
SNP belongs to cluster 0 given genotypes of subjects. The third column is the
posterior probability that a SNP belongs to cluster + given genotypes of subjects.

memSNPs a vector of SNP cluster membership for the 3-cluster partitionfrom the mixture
of 3 Bayesian hierarchical models.

memSNPs2 a vector of binary SNP cluster membership. 1 indicates the SNP has different
MAFs between cases and controls. 0 indicates the SNP has the same MAF in
cases as that in controls.

piVec a vector of cluster mixture proportions.

alpha the first shape parameter of the beta prior for MAF obtaind from initial 3-cluster
partitions based on GWAS.

beta the second shape parameter of the beta prior for MAF obtaind from initial 3-
cluster partitions based on GWAS.

loop number of iteration in EM algorithm

diff sum of the squared difference of cluster mixture proportions between current
iteration and previous iteration in EM algorithm. if eps < eps, we claim the EM
algorithm converges.

res.limma object returned by limma

Author(s)

Yan Xu <yanxu@uvic.ca>, Li Xing <sfulxing@gmail.com>, Jessica Su <rejas@channing.harvard.edu>,
Xuekui Zhang <xuekui@uvic.ca>, Weiliang Qiu <Weiliang.Qiu@gmail.com>

References

Yan X, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated
SNPs in case-control genome-wide association studies. Scientific Reports 9, Article number: 13686
(2019) https://www.nature.com/articles/s41598-019-50229-6.

Examples

data(esSimDiffPriors)
print(esSimDiffPriors)
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fDat = fData(esSimDiffPriors)
print(fDat[1:2,])
print(table(fDat$memGenes))

res = estMemSNPs.oneSetHyperPara(
es = esSimDiffPriors,
var.memSubjs = "memSubjs")

print(table(fDat$memGenes, res$memSNPs))

simGenoFunc Simulate Genotype Data from a Mixture of 3 Bayesian Hierarchical
Models

Description

Simulate Genotype Data from a Mixture of 3 Bayesian Hierarchical Models. The minor allele
frequency (MAF) of cases has the same prior as that of controls.

Usage

simGenoFunc(nCases = 100,
nControls = 100,
nSNPs = 1000,
alpha.p = 2,
beta.p = 5,
pi.p = 0.1,
alpha0 = 2,
beta0 = 5,
pi0 = 0.8,
alpha.n = 2,
beta.n = 5,
pi.n = 0.1,
low = 0.02,
upp = 0.5,
verbose = FALSE)

Arguments

nCases integer. Number of cases.

nControls integer. Number of controls.

nSNPs integer. Number of SNPs.

alpha.p numeric. The first shape parameter of Beta prior in cluster +.

beta.p numeric. The second shape parameter of Beta prior in cluster +.

pi.p numeric. Mixture proportion for cluster +.
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alpha0 numeric. The first shape parameter of Beta prior in cluster 0.
beta0 numeric. The second shape parameter of Beta prior in cluster 0.
pi0 numeric. Mixture proportion for cluster 0.
alpha.n numeric. The first shape parameter of Beta prior in cluster −.
beta.n numeric. The second shape parameter of Beta prior in cluster −.
pi.n numeric. Mixture proportion for cluster −.
low numeric. A small positive value. If a MAF generated from half-flat shape bi-

variate prior is smaller than low, we will delete the SNP to be generated.
upp numeric. A positive value. If a MAF generated from half-flat shape bivariate

prior is greater than upp, we will delete the SNP to be generated.
verbose logical. Indicating if intermediate results or final results should be output to

output screen.

Details

In this simulation, we generate additive-coded genotypes for 3 clusters of SNPs based on a mixture
of 3 Bayesian hierarchical models.

In cluster +, the minor allele frequency (MAF) θx+ of cases is greater than the MAF θy+ of controls.

In cluster 0, the MAF θ0 of cases is equal to the MAF of controls.

In cluster −, the MAF θx− of cases is smaller than the MAF θy− of controls.

The proportions of the 3 clusters of SNPs are π+, π0, and π−, respectively.

We assume a “half-flat shape” bivariate prior for the MAF in cluster +

2h+ (θx+)h+ (θy+) I (θx+ > θy+) ,

where I(a) is hte indicator function taking value 1 if the event a is true, and value 0 otherwise. The
function h+ is the probability density function of the beta distribution Beta (α+, β+).

We assume θ0 has the beta prior Beta(α0, β0).

We also assume a “half-flat shape” bivariate prior for the MAF in cluster −

2h− (θx−)h− (θy−) I (θx− > θy−) .

The function h− is the probability density function of the beta distribution Beta (α−, β−).

Given a SNP, we assume Hardy-Weinberg equilibrium holds for its genotypes. That is, given MAF
θ, the probabilities of genotypes are

Pr(geno = 2) = θ2

Pr(geno = 1) = 2θ (1− θ)

Pr(geno = 0) = (1− θ)
2

We also assume the genotypes 0 (wild-type), 1 (heterozygote), and 2 (mutation) follows a multino-
mial distribution Multinomial

{
1,
[
θ2, 2θ (1− θ) , (1− θ)

2
]}

Note that when we generate MAFs from the half-flat shape bivariate priors, we might get very small
MAFs or get MAFs > 0.5. In these cased, we then delete this SNP.

So the final number of SNPs generated might be less than the initially-set number of SNPs.
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Value

An ExpressionSet object stores genotype data.

Author(s)

Yan Xu <yanxu@uvic.ca>, Li Xing <sfulxing@gmail.com>, Jessica Su <rejas@channing.harvard.edu>,
Xuekui Zhang <xuekui@uvic.ca>, Weiliang Qiu <Weiliang.Qiu@gmail.com>

References

Yan X, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated
SNPs in case-control genome-wide association studies. Scientific Reports 9, Article number: 13686
(2019) https://www.nature.com/articles/s41598-019-50229-6.

Examples

set.seed(2)

esSim = simGenoFunc(
nCases = 100,
nControls = 100,
nSNPs = 500,
alpha.p = 2, beta.p = 5, pi.p = 0.1,
alpha0 = 2, beta0 = 5, pi0 = 0.8,
alpha.n = 2, beta.n = 5, pi.n = 0.1,
low = 0.02, upp = 0.5, verbose = FALSE

)

print(esSim)
pDat = pData(esSim)
print(pDat[1:2,])
print(table(pDat$memSubjs))

fDat = fData(esSim)
print(fDat[1:2,])
print(table(fDat$memGenes))
print(table(fDat$memGenes2))

simGenoFuncDiffPriors Simulate Genotype Data from a Mixture of 3 Bayesian Hierarchical
Models

Description

Simulate Genotype Data from a Mixture of 3 Bayesian Hierarchical Models. The minor allele
frequency (MAF) of cases has different priors than that of controls.
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Usage

simGenoFuncDiffPriors(
nCases = 100,
nControls = 100,
nSNPs = 1000,
alpha.p.ca = 2,
beta.p.ca = 3,
alpha.p.co = 2,
beta.p.co = 8,
pi.p = 0.1,
alpha0 = 2,
beta0 = 5,
pi0 = 0.8,
alpha.n.ca = 2,
beta.n.ca = 8,
alpha.n.co = 2,
beta.n.co = 3,
pi.n = 0.1,
low = 0.02,
upp = 0.5,
verbose = FALSE)

Arguments

nCases integer. Number of cases.

nControls integer. Number of controls.

nSNPs integer. Number of SNPs.

alpha.p.ca numeric. The first shape parameter of Beta prior in cluster + for cases.

beta.p.ca numeric. The second shape parameter of Beta prior in cluster + for cases.

alpha.p.co numeric. The first shape parameter of Beta prior in cluster + for controls.

beta.p.co numeric. The second shape parameter of Beta prior in cluster + for controls.

pi.p numeric. Mixture proportion for cluster +.

alpha0 numeric. The first shape parameter of Beta prior in cluster 0.

beta0 numeric. The second shape parameter of Beta prior in cluster 0.

pi0 numeric. Mixture proportion for cluster 0.

alpha.n.ca numeric. The first shape parameter of Beta prior in cluster − for cases.

beta.n.ca numeric. The second shape parameter of Beta prior in cluster − for cases.

alpha.n.co numeric. The first shape parameter of Beta prior in cluster − for controls.

beta.n.co numeric. The second shape parameter of Beta prior in cluster − for controls.

pi.n numeric. Mixture proportion for cluster −.

low numeric. A small positive value. If a MAF generated from half-flat shape bi-
variate prior is smaller than low, we will delete the SNP to be generated.
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upp numeric. A positive value. If a MAF generated from half-flat shape bivariate
prior is greater than upp, we will delete the SNP to be generated.

verbose logical. Indicating if intermediate results or final results should be output to
output screen.

Details

In this simulation, we generate additive-coded genotypes for 3 clusters of SNPs based on a mixture
of 3 Bayesian hierarchical models.

In cluster +, the minor allele frequency (MAF) θx+ of cases is greater than the MAF θy+ of controls.

In cluster 0, the MAF θ0 of cases is equal to the MAF of controls.

In cluster −, the MAF θx− of cases is smaller than the MAF θy− of controls.

The proportions of the 3 clusters of SNPs are π+, π0, and π−, respectively.

We assume a “half-flat shape” bivariate prior for the MAF in cluster +

2h+ (θx+)h+ (θy+) I (θx+ > θy+) ,

where I(a) is hte indicator function taking value 1 if the event a is true, and value 0 otherwise. The
function h+ is the probability density function of the beta distribution Beta (α+, β+).

We assume θ0 has the beta prior Beta(α0, β0).

We also assume a “half-flat shape” bivariate prior for the MAF in cluster −

2h− (θx−)h− (θy−) I (θx− > θy−) .

The function h− is the probability density function of the beta distribution Beta (α−, β−).

Given a SNP, we assume Hardy-Weinberg equilibrium holds for its genotypes. That is, given MAF
θ, the probabilities of genotypes are

Pr(geno = 2) = θ2

Pr(geno = 1) = 2θ (1− θ)

Pr(geno = 0) = (1− θ)
2

We also assume the genotypes 0 (wild-type), 1 (heterozygote), and 2 (mutation) follows a multino-
mial distribution Multinomial

{
1,
[
θ2, 2θ (1− θ) , (1− θ)

2
]}

Note that when we generate MAFs from the half-flat shape bivariate priors, we might get very small
MAFs or get MAFs > 0.5. In these cased, we then delete this SNP.

So the final number of SNPs generated might be less than the initially-set number of SNPs.

Value

An ExpressionSet object stores genotype data.

Author(s)

Yan Xu <yanxu@uvic.ca>, Li Xing <sfulxing@gmail.com>, Jessica Su <rejas@channing.harvard.edu>,
Xuekui Zhang <xuekui@uvic.ca>, Weiliang Qiu <Weiliang.Qiu@gmail.com>



16 simGenoFuncDiffPriors

References

Yan X, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated
SNPs in case-control genome-wide association studies. Scientific Reports 9, Article number: 13686
(2019) https://www.nature.com/articles/s41598-019-50229-6.

Examples

set.seed(2)

esSimDiffPriors = simGenoFuncDiffPriors(
nCases = 100,
nControls = 100,
nSNPs = 500,
alpha.p.ca = 2, beta.p.ca = 3,
alpha.p.co = 2, beta.p.co = 8, pi.p = 0.1,
alpha0 = 2, beta0 = 5, pi0 = 0.8,
alpha.n.ca = 2, beta.n.ca = 8,
alpha.n.co = 2, beta.n.co = 3, pi.n = 0.1,
low = 0.02, upp = 0.5, verbose = FALSE

)

print(esSimDiffPriors)

pDat = pData(esSimDiffPriors)
print(pDat[1:2,])
print(table(pDat$memSubjs))

fDat = fData(esSimDiffPriors)
print(fDat[1:2,])
print(table(fDat$memGenes))
print(table(fDat$memGenes2))
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