Type: | Package |
Title: | Computation of Generalized Nash Equilibria |
Version: | 0.99-6 |
Description: | Compute standard and generalized Nash Equilibria of non-cooperative games. Optimization methods available are nonsmooth reformulation, fixed-point formulation, minimization problem and constrained-equation reformulation. See e.g. Kanzow and Facchinei (2010), <doi:10.1007/s10479-009-0653-x>. |
Depends: | R (≥ 3.0.0), alabama, nleqslv, BB, SQUAREM, methods |
Suggests: | knitr, rmarkdown |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
VignetteBuilder: | knitr |
BuildVignettes: | true |
URL: | https://r-forge.r-project.org/projects/optimizer/ |
NeedsCompilation: | yes |
Packaged: | 2024-10-17 13:25:37 UTC; dutang |
Author: | Christophe Dutang |
Maintainer: | Christophe Dutang <dutangc@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2024-10-17 14:00:06 UTC |
Constrained Equation Reformulation
Description
functions of the Constrained Equation Reformulation of the GNEP
Usage
funCER(z, dimx, dimlam,
grobj, arggrobj,
constr, argconstr,
grconstr, arggrconstr,
dimmu, joint, argjoint,
grjoint, arggrjoint,
echo=FALSE)
jacCER(z, dimx, dimlam,
heobj, argheobj,
constr, argconstr,
grconstr, arggrconstr,
heconstr, argheconstr,
dimmu, joint, argjoint,
grjoint, arggrjoint,
hejoint, arghejoint,
echo=FALSE)
Arguments
z |
a numeric vector z containing x then lambda values. |
dimx |
dimension of x. |
dimlam |
dimension of lambda. |
grobj |
gradient of the objective function, see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
constr |
constraint function, see details. |
argconstr |
a list of additional arguments of the constraint function. |
grconstr |
gradient of the constraint function, see details. |
arggrconstr |
a list of additional arguments of the constraint gradient. |
dimmu |
a vector of dimension for |
joint |
joint function, see details. |
argjoint |
a list of additional arguments of the joint function. |
grjoint |
gradient of the joint function, see details. |
arggrjoint |
a list of additional arguments of the joint gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
heconstr |
Hessian of the constraint function, see details. |
argheconstr |
a list of additional arguments of the constraint Hessian. |
hejoint |
Hessian of the joint function, see details. |
arghejoint |
a list of additional arguments of the joint Hessian. |
echo |
a logical to show some traces. |
Details
Compute the H function or the Jacobian of the H function defined in Dreves et al.(2009).
- Arguments of the H function
-
The arguments which are functions must respect the following features
grobj
-
The gradient
Grad Obj
of an objective functionObj
(to be minimized) must have 3 arguments forGrad Obj(z, playnum, ideriv)
: vectorz
, player number, derivative index , and optionnally additional arguments inarggrobj
. constr
-
The constraint function
g
must have 2 arguments: vectorz
, player number, such thatg(z, playnum) <= 0
. Optionnally,g
may have additional arguments inargconstr
. grconstr
-
The gradient of the constraint function
g
must have 3 arguments: vectorz
, player number, derivative index, and optionnally additional arguments inarggrconstr
.
- Arguments of the Jacobian of H
-
The arguments which are functions must respect the following features
heobj
It must have 4 arguments: vector
z
, player number, two derivative indexes.heconstr
It must have 4 arguments: vector
z
, player number, two derivative indexes.
Optionnally,
heobj
andheconstr
can have additional argumentsargheobj
andargheconstr
.
See the example below.
Value
A vector for funCER
or a matrix for jacCER
.
Author(s)
Christophe Dutang
References
Dreves, A., Facchinei, F., Kanzow, C. and Sagratella, S. (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization.
F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
See Also
See also GNE.ceq
.
Examples
#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
if(i == 1)
res <- c(2*(x[1]-1), 0)
if(i == 2)
res <- c(0, 2*(x[2]-1/2))
res[j]
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
2 * (i == j && j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
#true value is (3/4, 1/4, 1/2, 1/2)
funCER(z0, dimx, dimlam, grobj=grobj,
constr=g, grconstr=grg)
jacCER(z0, dimx, dimlam, heobj=heobj,
constr=g, grconstr=grg, heconstr=heg)
#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------
#constants
myarg <- list(d= 20, lambda= 4, rho= 1)
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
res <- -arg$rho * x[i]
if(i == j)
res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
arg$rho * (i == j) + arg$rho * (j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
#true value is (16/3, 16/3, 0, 0)
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
funCER(z0, dimx, dimlam, grobj=grobj, arggrobj=myarg,
constr=g, grconstr=grg)
jacCER(z0, dimx, dimlam, heobj=heobj,
argheobj=myarg, constr=g, grconstr=grg, heconstr=heg)
GNE package
Description
Generalized Nash Equilibrium computational methods.
Usage
GNE(approach =
c("non smooth", "fixed point", "minimization", "constrained equation"),
method = "default", xinit, control=list(), ...)
Arguments
approach |
a character string for the approach: either |
method |
a character string for the computation method: either |
xinit |
a numeric vector for the initial point. |
... |
further arguments to be passed to |
control |
a list with control parameters. |
Details
Computing generalized Nash Equilibrium can be done in three different approaches.
- (i) extended KKT system
It consists in solving the non smooth extended Karush-Kuhn-Tucker (KKT) system
\Phi(z)=0
.- (ii) fixed point approach
It consists in solving equation
y(x)=x
.- (iii) gap function minimization
It consists in minimizing a gap function
min V(x)
.- (iv) constrained equation
It consists in solving
F(x)
such thatx
belongs to a specific set.
The GNE
function is a global function calling the appropriate function GNE.nseq
,
GNE.fpeq
, GNE.ceq
or GNE.minpb
.
Benchmark functions comparing all methods for a given reformulation are
available: see bench.GNE
.
Additionnal utitilty functions are also available:
rejection
, projector
, stepfunc
,
complementarity
and funSSR
.
Value
A list with components:
par
The best set of parameters found.
value
The value of the merit function.
counts
A two-element integer vector giving the number of calls to
phi
andjacphi
respectively.iter
The outer iteration number.
code
-
The values returned are
1
Function criterion is near zero. Convergence of function values has been achieved.
2
x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than
xtol
.3
No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.
4
Iteration limit
maxit
exceeded.5
Jacobian is too ill-conditioned.
6
Jacobian is singular.
100
an error in the execution.
message
a string describing the termination code
fvec
a vector with function values.
approach
the name of the approach.
Author(s)
Christophe Dutang
References
F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.
A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .
F. Facchinei and C. Kanzow (2009), Generalized Nash Equilibrium problems. Preprint 290.
C. Dutang (2013), A survey of GNE computation methods: theory and algorithms, preprint on HAL, https://hal.science/hal-00813531.
See Also
See GNE.fpeq
, GNE.minpb
, GNE.ceq
and GNE.nseq
for other approaches.
Constrained equation reformulation of the GNE problem.
Description
Constrained equation reformulation via the extended KKT system of the GNE problem.
Usage
GNE.ceq(init, dimx, dimlam, grobj, arggrobj, heobj, argheobj,
constr, argconstr, grconstr, arggrconstr, heconstr, argheconstr,
dimmu, joint, argjoint, grjoint, arggrjoint, hejoint, arghejoint,
method="PR", control=list(), silent=TRUE, ...)
Arguments
init |
Initial values for the parameters to be optimized over: |
dimx |
a vector of dimension for |
dimlam |
a vector of dimension for |
grobj |
gradient of the objective function (to be minimized), see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
constr |
constraint function ( |
argconstr |
a list of additional arguments of the constraint function. |
grconstr |
gradient of the constraint function, see details. |
arggrconstr |
a list of additional arguments of the constraint gradient. |
heconstr |
Hessian of the constraint function, see details. |
argheconstr |
a list of additional arguments of the constraint Hessian. |
dimmu |
a vector of dimension for |
joint |
joint function ( |
argjoint |
a list of additional arguments of the joint function. |
grjoint |
gradient of the joint function, see details. |
arggrjoint |
a list of additional arguments of the joint gradient. |
hejoint |
Hessian of the joint function, see details. |
arghejoint |
a list of additional arguments of the joint Hessian. |
method |
a character string specifying the method
|
control |
a list with control parameters. |
... |
further arguments to be passed to the optimization routine.
NOT to the functions |
silent |
a logical to get some traces. Default to |
Details
GNE.ceq
solves the GNE problem via a constrained equation reformulation of the KKT system.
This approach consists in solving the extended Karush-Kuhn-Tucker
(KKT) system denoted by H(z)=0
, for z \in \Omega
where z
is formed by the players strategy
x
, the Lagrange multiplier \lambda
and the slate variable w
.
The root problem H(z)=0
is solved by an iterative scheme z_{n+1} = z_n + d_n
,
where the direction d_n
is computed in two different ways. Let J(x)=Jac H(x)
.
There are two possible methods either "PR"
for potential reduction algorithm
or "AS"
for affine scaled trust reduction algorithm.
- (a) potential reduction algorithm:
The direction solves the system
H(z_n) + J(z_n) d = sigma_n a^T H(z_n) / ||a||_2^2 a
.- (b) bound-constrained trust region algorithm:
The direction solves the system
\min_p ||J(z_n)^T p + H(z_n)||^2
, forp
such that||p|| <= Delta_n||
.
...
are further arguments to be passed to the optimization routine,
that is global
, xscalm
, silent
.
A globalization scheme can be choosed using the global
argument.
Available schemes are
- (1) Line search:
if
global
is set to"qline"
or"gline"
, a line search is used with the merit function being half of the L2 norm ofPhi
, respectively with a quadratic or a geometric implementation.- (3) Trust-region:
if
global
is set to"pwldog"
, the Powell dogleg method is used.- (2) None:
if
global
is set to"none"
, no globalization is done.
The default value of global
is "gline"
when method="PR"
and
"pwldog"
when method="AS"
.
The xscalm
is a scaling parameter to used, either "fixed"
(default)
or "auto"
, for which scaling factors are calculated from the euclidean norms of the
columns of the jacobian matrix.
The silent
argument is a logical to report or not the optimization process, default
to FALSE
.
The control
argument is a list that can supply any of the following components:
xtol
The relative steplength tolerance. When the relative steplength of all scaled x values is smaller than this value convergence is declared. The default value is
10^{-8}
.ftol
The function value tolerance. Convergence is declared when the largest absolute function value is smaller than
ftol
. The default value is10^{-8}
.btol
The backtracking tolerance. The default value is
10^{-2}
.maxit
The maximum number of major iterations. The default value is 100 if a global strategy has been specified.
trace
Non-negative integer. A value of 1 will give a detailed report of the progress of the iteration, default 0.
sigma
,delta
,zeta
Parameters initialized to
1/2
,1
,length(init)/2
, respectively, whenmethod="PR"
.forcingpar
Forcing parameter set to 0.1, when
method="PR"
.theta
,radiusmin
,reducmin
,radiusmax
,radiusred
,reducred
,radiusexp
,reducexp
-
Parameters initialized to
0.99995
,1
,0.1
,1e10
,1/2
,1/4
,2
,3/4
, whenmethod="AS"
.
Value
GNE.ceq
returns a list with components:
par
The best set of parameters found.
value
The value of the merit function.
counts
A two-element integer vector giving the number of calls to
H
andjacH
respectively.iter
The outer iteration number.
code
-
The values returned are
1
Function criterion is near zero. Convergence of function values has been achieved.
2
x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than
xtol
.3
No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.
4
Iteration limit
maxit
exceeded.5
Jacobian is too ill-conditioned.
6
Jacobian is singular.
100
an error in the execution.
message
a string describing the termination code.
fvec
a vector with function values.
Author(s)
Christophe Dutang
References
J.E. Dennis and J.J. Moree (1977), Quasi-Newton methods, Motivation and Theory, SIAM review.
Monteiro, R. and Pang, J.-S. (1999), A Potential Reduction Newton Method for Constrained equations, SIAM Journal on Optimization 9(3), 729-754.
S. Bellavia, M. Macconi and B. Morini (2003), An affine scaling trust-region approach to bound-constrained nonlinear systems, Applied Numerical Mathematics 44, 257-280
A. Dreves, F. Facchinei, C. Kanzow and S. Sagratella (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization 21(3), 1082-1108.
See Also
See GNE.fpeq
, GNE.minpb
and GNE.nseq
for other approaches; funCER
and
jacCER
for template functions of H
and Jac H
.
Examples
#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
if(i == 1)
res <- c(2*(x[1]-1), 0)
if(i == 2)
res <- c(0, 2*(x[2]-1/2))
res[j]
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
2 * (i == j && j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
#true value is (3/4, 1/4, 1/2, 1/2)
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj,
constr=g, grconstr=grg, heconstr=heg, method="PR",
control=list(trace=0, maxit=10))
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj,
constr=g, grconstr=grg, heconstr=heg, method="AS", global="pwldog",
xscalm="auto", control=list(trace=0, maxit=100))
#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------
#constants
myarg <- list(d= 20, lambda= 4, rho= 1)
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
res <- -arg$rho * x[i]
if(i == j)
res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
arg$rho * (i == j) + arg$rho * (j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
#true value is (16/3, 16/3, 0, 0)
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg,
argheobj=myarg, constr=g, grconstr=grg, heconstr=heg,
method="PR", control=list(trace=0, maxit=10))
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg,
argheobj=myarg, constr=g, grconstr=grg, heconstr=heg,
method="AS", global="pwldog", xscalm="auto", control=list(trace=0, maxit=100))
Fixed point equation reformulation of the GNE problem.
Description
Fixed point equation reformulation via the NI function of the GNE problem.
Usage
GNE.fpeq(init, dimx, obj, argobj, grobj, arggrobj,
heobj, argheobj, joint, argjoint, jacjoint, argjacjoint,
method = "default", problem = c("NIR", "VIR"),
merit = c("NI", "VI", "FP"), order.method=1, control.outer=list(),
control.inner=list(), silent=TRUE, param=list(), stepfunc, argstep, ...)
Arguments
init |
Initial values for the parameters to be optimized over: |
dimx |
a vector of dimension for |
obj |
objective function (to be minimized), see details. |
argobj |
a list of additional arguments. |
grobj |
gradient of the objective function, see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
joint |
joint function ( |
argjoint |
a list of additional arguments of the joint function. |
jacjoint |
Jacobian of the joint function, see details. |
argjacjoint |
a list of additional arguments of the Jacobian. |
method |
either |
problem |
either |
merit |
either |
order.method |
the order of the extrapolation method. |
control.outer |
a list with control parameters for the fixed point algorithm. |
control.inner |
a list with control parameters for the fixed point function. |
silent |
a logical to show some traces. |
param |
a list of parameters for the computation of the fixed point function. |
stepfunc |
the step function, only needed when |
argstep |
additional arguments for the step function. |
... |
further arguments to be passed to the optimization routine. NOT to the functions. |
Details
Functions in argument must respect the following template:
obj
must have arguments the current iteratez
, the player numberi
and optionnally additional arguments given in a list.grobj
must have arguments the current iteratez
, the player numberi
, the derivative indexj
and optionnally additional arguments given in a list.heobj
must have arguments the current iteratez
, the player numberi
, the derivative indexesj
,k
and optionnally additional arguments given in a list.joint
must have arguments the current iteratez
and optionnally additional arguments given in a list.jacjoint
must have arguments the current iteratez
, the derivative indexj
and optionnally additional arguments given in a list.
The fixed point approach consists in solving equation y(x)=x
.
- (a) Crude or pure fixed point method:
-
It simply consists in iterations
x_{n+1} = y(x_n)
. - (b) Polynomial methods:
-
- - relaxation algorithm (linear extrapolation):
-
The next iterate is computed as
x_{n+1} = (1-\alpha_n) x_n + \alpha_n y(x_n).
The step
\alpha_n
can be computed in different ways: constant, decreasing serie or a line search method. In the literature of game theory, the decreasing serie refers to the method of Ursayev and Rubinstein (method="UR"
) while the line search method refers to the method of von Heusinger (method="vH"
). Note that the constant step can be done using the UR method. - - RRE and MPE method:
-
Reduced Rank Extrapolation and Minimal Polynomial Extrapolation methods are polynomial extrapolation methods, where the monomials are functional “powers” of the y function, i.e. function composition of y. Of order 1, RRE and MPE consists of
x_{n+1} = x_n + t_n (y(x_n) - x_n),
where
t_n
equals to<v_n, r_n> / <v_n, v_n>
for RRE1 and<r_n, r_n> / <v_n, r_n>
for MPE1, wherer_n =y(x_n) - x_n
andv_n = y(y(x_n)) - 2y(x_n) + x_n
. To use RRE/MPE methods, setmethod = "RRE"
ormethod = "MPE"
. - - squaring method:
-
It consists in using an extrapolation method (such as RRE and MPE) after two iteration of the linear extrapolation, i.e.
x_{n+1} = x_n -2 t_n r_n + t_n^2 v_n.
The squared version of RRE/MPE methods are available via setting
method = "SqRRE"
ormethod = "SqMPE"
.
- (c) Epsilon algorithms:
Not implemented.
For details on fixed point methods, see Varadhan & Roland (2004).
The control.outer
argument is a list that can supply any of the following components:
merit="FP"
andmethod="pure"
see
fpiter
. the default parameters arelist(tol=1e-6, maxiter=100, trace=TRUE)
.merit="FP"
andmethod!="pure"
see
squarem
. the default parameters arelist(tol=1e-6, maxiter=100, trace=TRUE)
.merit!="FP"
parameters are
tol
The absolute convergence tolerance. Default to 1e-6.
maxit
The maximum number of iterations. Default to 100.
echo
A logical or an integer (0, 1, 2, 3) to print traces. Default to
FALSE
, i.e. 0.sigma, beta
parameters for von Heusinger algorithm. Default to 9/10 and 1/2 respectively.
Value
A list with components:
par
The best set of parameters found.
value
The value of the merit function.
outer.counts
A two-element integer vector giving the number of calls to fixed-point and merit functions respectively.
outer.iter
The outer iteration number.
code
-
The values returned are
1
Function criterion is near zero. Convergence of function values has been achieved.
4
Iteration limit
maxit
exceeded.100
an error in the execution.
inner.iter
The iteration number when computing the fixed-point function.
inner.counts
A two-element integer vector giving the number of calls to the gap function and its gradient when computing the fixed-point function.
message
a string describing the termination code
Author(s)
Christophe Dutang
References
A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.
A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .
S. Uryasev and R.Y. Rubinstein (1994), On relaxation algorithms in computation of noncooperative equilibria, IEEE Transactions on Automatic Control.
R. Varadhan and C. Roland (2004), Squared Extrapolation Methods (SQUAREM): A New Class of Simple and Efficient Numerical Schemes for Accelerating the Convergence of the EM Algorithm, Johns Hopkins University, Dept. of Biostatistics Working Papers.
See Also
See GNE.ceq
, GNE.minpb
and GNE.nseq
for other approaches.
Non smooth equation reformulation of the GNE problem.
Description
Non smooth equation reformulation via the extended KKT system of the GNE problem.
Usage
GNE.minpb(init, dimx, obj, argobj, grobj, arggrobj,
heobj, argheobj, joint, argjoint, jacjoint, argjacjoint,
method="default", problem = c("NIR", "VIR"), control.outer=list(),
control.inner=list(), silent=TRUE, param=list(),
optim.type=c("free","constr"), ...)
Arguments
init |
Initial values for the parameters to be optimized over: |
dimx |
a vector of dimension for |
obj |
objective function (to be minimized), see details. |
argobj |
a list of additional arguments. |
grobj |
gradient of the objective function, see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
joint |
joint function ( |
argjoint |
a list of additional arguments of the joint function. |
jacjoint |
Jacobian of the joint function, see details. |
argjacjoint |
a list of additional arguments of the Jacobian. |
method |
either |
problem |
either |
optim.type |
either |
control.outer |
a list with control parameters for the minimization algorithm. |
control.inner |
a list with control parameters for the minimization function. |
... |
further arguments to be passed to the optimization routine.
NOT to the functions |
silent |
a logical to show some traces. |
param |
a list of parameters for the computation of the minimization function. |
Details
Functions in argument must respect the following template:
obj
must have arguments the current iteratez
, the player numberi
and optionnally additional arguments given in a list.grobj
must have arguments the current iteratez
, the player numberi
, the derivative indexj
and optionnally additional arguments given in a list.heobj
must have arguments the current iteratez
, the player numberi
, the derivative indexesj
,k
and optionnally additional arguments given in a list.joint
must have arguments the current iteratez
and optionnally additional arguments given in a list.jacjoint
must have arguments the current iteratez
, the derivative indexj
and optionnally additional arguments given in a list.
The gap function minimization consists in minimizing a gap function min V(x)
. The function minGap
provides two optimization methods to solve this minimization problem.
- Barzilai-Borwein algorithm
when
method = "BB"
, we use Barzilai-Borwein iterative scheme to find the minimum.- Conjugate gradient algorithm
when
method = "CG"
, we use the CG iterative scheme implemented inR
, an Hessian-free method.- Broyden-Fletcher-Goldfarb-Shanno algorithm
when
method = "BFGS"
, we use the BFGS iterative scheme implemented inR
, a quasi-Newton method with line search.
In the game theory literature, there are two main gap functions: the regularized
Nikaido-Isoda (NI) function and the regularized QVI gap function.
This correspond to type="NI"
and type="VI"
, respectively.
See von Heusinger & Kanzow (2009) for details on the NI function and
Kubota & Fukushima (2009) for the QVI regularized gap function.
The control.outer
argument is a list that can supply any of the following components:
tol
The absolute convergence tolerance. Default to 1e-6.
maxit
The maximum number of iterations. Default to 100.
echo
A logical or an integer (0, 1, 2, 3) to print traces. Default to
FALSE
, i.e. 0.stepinit
Initial step size for the BB method (should be small if gradient is “big”). Default to 1.
Note that the Gap
function can return a numeric or a list with computation details. In the
latter case, the object return must be a list with the following components
value
, counts
, iter
, see the example below.
Value
A list with components:
par
The best set of parameters found.
value
The value of the merit function.
outer.counts
A two-element integer vector giving the number of calls to
Gap
andgradGap
respectively.outer.iter
The outer iteration number.
code
-
The values returned are
1
Function criterion is near zero. Convergence of function values has been achieved.
2
x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than
xtol
.3
No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.
4
Iteration limit
maxit
exceeded.5
Jacobian is too ill-conditioned.
6
Jacobian is singular.
100
an error in the execution.
inner.iter
The iteration number when computing the minimization function.
inner.counts
A two-element integer vector giving the number of calls to the gap function and its gradient when computing the minimization function.
message
a string describing the termination code
Author(s)
Christophe Dutang
References
A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.
A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .
K. Kubota and M. Fukushima (2009), Gap function approach to the generalized Nash Equilibrium problem, Journal of Optimization theory and applications.
See Also
See GNE.fpeq
, GNE.ceq
and GNE.nseq
for other approaches.
Non smooth equation reformulation of the GNE problem.
Description
Non smooth equation reformulation via the extended KKT system of the GNE problem.
Usage
GNE.nseq(init, dimx, dimlam, grobj, arggrobj, heobj, argheobj,
constr, argconstr, grconstr, arggrconstr, heconstr, argheconstr,
compl, gcompla, gcomplb, argcompl,
dimmu, joint, argjoint, grjoint, arggrjoint, hejoint, arghejoint,
method="default", control=list(), silent=TRUE, ...)
Arguments
init |
Initial values for the parameters to be optimized over: |
dimx |
a vector of dimension for |
dimlam |
a vector of dimension for |
grobj |
gradient of the objective function (to be minimized), see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
constr |
constraint function ( |
argconstr |
a list of additional arguments of the constraint function. |
grconstr |
gradient of the constraint function, see details. |
arggrconstr |
a list of additional arguments of the constraint gradient. |
heconstr |
Hessian of the constraint function, see details. |
argheconstr |
a list of additional arguments of the constraint Hessian. |
compl |
the complementarity function with (at least) two arguments: |
argcompl |
list of possible additional arguments for |
gcompla |
derivative of the complementarity function w.r.t. the first argument. |
gcomplb |
derivative of the complementarity function w.r.t. the second argument. |
dimmu |
a vector of dimension for |
joint |
joint function ( |
argjoint |
a list of additional arguments of the joint function. |
grjoint |
gradient of the joint function, see details. |
arggrjoint |
a list of additional arguments of the joint gradient. |
hejoint |
Hessian of the joint function, see details. |
arghejoint |
a list of additional arguments of the joint Hessian. |
method |
a character string specifying the method |
control |
a list with control parameters. |
... |
further arguments to be passed to the optimization routine.
NOT to the functions |
silent |
a logical to get some traces. Default to |
Details
Functions in argument must respect the following template:
constr
must have arguments the current iteratez
, the player numberi
and optionnally additional arguments given in a list.grobj
,grconstr
must have arguments the current iteratez
, the player numberi
, the derivative indexj
and optionnally additional arguments given in a list.heobj
,heconstr
must have arguments the current iteratez
, the player numberi
, the derivative indexesj
,k
and optionnally additional arguments given in a list.compl
,gcompla
,gcomplb
must have two argumentsa
,b
and optionnally additional arguments given in a list.joint
must have arguments the current iteratez
and optionnally additional arguments given in a list.grjoint
must have arguments the current iteratez
, the derivative indexj
and optionnally additional arguments given in a list.hejoint
must have arguments the current iteratez
, the derivative indexesj
,k
and optionnally additional arguments given in a list.
GNE.nseq
solves the GNE problem via a non smooth reformulation of the KKT system.
bench.GNE.nseq
carries out a benchmark of the computation methods (Newton and Broyden
direction with all possible global schemes) for a given initial point.
bench.GNE.nseq.LM
carries out a benchmark of the Levenberg-Marquardt computation method.
This approach consists in solving the extended Karush-Kuhn-Tucker
(KKT) system denoted by \Phi(z)=0
, where z
is formed by the players strategy
x
and the Lagrange multiplier \lambda
.
The root problem \Phi(z)=0
is solved by an iterative scheme z_{n+1} = z_n + d_n
,
where the direction d_n
is computed in three different ways. Let J(x)=Jac\Phi(x)
.
- (a) Newton:
The direction solves the system
J(z_n) d = - \Phi(z_n)
, generally called the Newton equation.- (b) Broyden:
It is a quasi-Newton method aiming to solve an approximate version of the Newton equation
d = -\Phi(z_n) W_n
whereW_n
is computed by an iterative scheme. In the current implementation,W_n
is updated by the Broyden method.- (c) Levenberg-Marquardt:
The direction solves the system
\left[ J(z_n)^T J(z_n) + \lambda_n^\delta I \right] d = - J(z_n)^T\Phi(x_n)
where
I
denotes the identity matrix,\delta
is a parameter in [1,2] and\lambda_n = ||\Phi(z_n)||
ifLM.param="merit"
,||J(z_n)^T \Phi(z_n)||
ifLM.param="jacmerit"
, the minimum of both preceding quantities ifLM.param="min"
, or an adatpive parameter according to Fan(2003) ifLM.param="adaptive"
.
In addition to the computation method, a globalization scheme can be choosed using the global
argument, via the ...
argument. Available schemes are
- (1) Line search:
if
global
is set to"qline"
or"gline"
, a line search is used with the merit function being half of the L2 norm ofPhi
, respectively with a quadratic or a geometric implementation.- (2) Trust region:
if
global
is set to"dbldog"
or"pwldog"
, a trust region is used respectively with a double dogleg or a Powell (simple) dogleg implementation. This global scheme is not available for the Levenberg-Marquardt direction.- (3) None:
if
global
is set to"none"
, no globalization is done.
The default value of global
is "gline"
. Note that in the special case of
the Levenberg-Marquardt direction with adaptive parameter, the global scheme must be "none"
.
In the GNEP context, details on the methods can be found in Facchinei, Fischer & Piccialli (2009), "Newton"
corresponds to method 1 and "Levenberg-Marquardt"
to method 3. In a general nonlinear
equation framework, see Dennis & Moree (1977), Dennis & Schnabel (1996) or Nocedal & Wright (2006),
The implementation relies heavily on the
nleqslv
function of the package of the same name. So full details on the control parameters are
to be found in the help page of this function. We briefly recall here the main parameters.
The control
argument is a list that can supply any of the following components:
xtol
The relative steplength tolerance. When the relative steplength of all scaled x values is smaller than this value convergence is declared. The default value is
10^{-8}
.ftol
The function value tolerance. Convergence is declared when the largest absolute function value is smaller than
ftol
. The default value is10^{-8}
.delta
A numeric
delta
in [1, 2], default to 2, for the Levenberg-Marquardt method only.LM.param
A character string, default to
"merit"
, for the Levenberg-Marquardt method only.maxit
The maximum number of major iterations. The default value is 150 if a global strategy has been specified.
trace
Non-negative integer. A value of 1 will give a detailed report of the progress of the iteration, default 0.
...
are further arguments to be passed to the optimization routine,
that is global
, xscalm
, silent
. See above for the globalization scheme.
The xscalm
is a scaling parameter to used, either "fixed"
(default)
or "auto"
, for which scaling factors are calculated from the euclidean norms of the
columns of the jacobian matrix. See nleqslv
for details.
The silent
argument is a logical to report or not the optimization process, default
to FALSE
.
Value
GNE.nseq
returns a list with components:
par
The best set of parameters found.
value
The value of the merit function.
counts
A two-element integer vector giving the number of calls to
phi
andjacphi
respectively.iter
The outer iteration number.
code
-
The values returned are
1
Function criterion is near zero. Convergence of function values has been achieved.
2
x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than
xtol
.3
No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.
4
Iteration limit
maxit
exceeded.5
Jacobian is too ill-conditioned.
6
Jacobian is singular.
100
an error in the execution.
message
a string describing the termination code.
fvec
a vector with function values.
bench.GNE.nseq
returns a list with components:
compres
a data.frame summarizing the different computations.
reslist
a list with the different results from
GNE.nseq
.
Author(s)
Christophe Dutang
References
J.E. Dennis and J.J. Moree (1977), Quasi-Newton methods, Motivation and Theory, SIAM review.
J.E. Dennis and R.B. Schnabel (1996), Numerical methods for unconstrained optimization and nonlinear equations, SIAM.
F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
J.-Y. Fan (2003), A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations, Journal of Computational Mathematics.
B. Hasselman (2011), nleqslv: Solve systems of non linear equations, R package.
A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .
J. Nocedal and S.J. Wright (2006), Numerical Optimization, Springer Science+Business Media
See Also
See GNE.fpeq
, GNE.ceq
and GNE.minpb
for other approaches; funSSR
and
jacSSR
for template functions of \Phi
and Jac\Phi
and
complementarity
for complementarity functions.
See also nleqslv
for some optimization details.
Examples
#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
if(i == 1)
res <- c(2*(x[1]-1), 0)
if(i == 2)
res <- c(0, 2*(x[2]-1/2))
res[j]
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
2 * (i == j && j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
#true value is (3/4, 1/4, 1/2, 1/2)
z0 <- rep(0, sum(dimx)+sum(dimlam))
funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
jacSSR(z0, dimx, dimlam, heobj=heobj, constr=g, grconstr=grg,
heconstr=heg, gcompla=GrAphiFB, gcomplb=GrBphiFB)
GNE.nseq(z0, dimx, dimlam, grobj=grobj, NULL, heobj=heobj, NULL,
constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL,
compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",
control=list(trace=1))
GNE.nseq(z0, dimx, dimlam, grobj=grobj, NULL, heobj=heobj, NULL,
constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL,
compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Broyden",
control=list(trace=1))
#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------
#constants
myarg <- list(d= 20, lambda= 4, rho= 1)
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
res <- -arg$rho * x[i]
if(i == j)
res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
arg$rho * (i == j) + arg$rho * (j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
#true value is (16/3, 16/3, 0, 0)
z0 <- rep(0, sum(dimx)+sum(dimlam))
funSSR(z0, dimx, dimlam, grobj=grobj, myarg, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)
jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg,
heconstr=heg, gcompla=GrAphiFB, gcomplb=GrBphiFB)
GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL,
compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton",
control=list(trace=1))
GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg,
constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL,
compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Broyden",
control=list(trace=1))
Nikaido Isoda Reformulation
Description
functions of the Nikaido Isoda Reformulation of the GNEP
Usage
gapNIR(x, y, dimx, obj, argobj, param=list(), echo=FALSE)
gradxgapNIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
gradygapNIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
fpNIR(x, dimx, obj, argobj, joint, argjoint,
grobj, arggrobj, jacjoint, argjacjoint, param=list(),
echo=FALSE, control=list(), yinit=NULL, optim.method="default")
Arguments
x , y |
a numeric vector. |
dimx |
a vector of dimension for |
obj |
objective function (to be minimized), see details. |
argobj |
a list of additional arguments. |
grobj |
gradient of the objective function, see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
joint |
joint function, see details. |
argjoint |
a list of additional arguments of the joint function. |
jacjoint |
gradient of the joint function, see details. |
argjacjoint |
a list of additional arguments of the joint Jacobian. |
param |
a list of parameters. |
control |
a list with control parameters for the fixed point algorithm. |
yinit |
initial point when computing the fixed-point function. |
optim.method |
optimization method when computing the fixed-point function. |
echo |
a logical to show some traces. |
Details
gapNIR
computes the Nikaido Isoda function of the GNEP, while gradxgapNIR
and gradygapNIR
give its gradient with respect to x
and y
.
fpNIR
computes the fixed-point function.
Value
A vector for funSSR
or a matrix for jacSSR
.
Author(s)
Christophe Dutang
References
A. von Heusinger & J. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .
F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
See Also
See also GNE.fpeq
.
SemiSmooth Reformulation
Description
functions of the SemiSmooth Reformulation of the GNEP
Usage
funSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, grconstr, arggrconstr,
compl, argcompl, dimmu, joint, argjoint, grjoint, arggrjoint, echo=FALSE)
jacSSR(z, dimx, dimlam, heobj, argheobj, constr, argconstr, grconstr, arggrconstr,
heconstr, argheconstr, gcompla, gcomplb, argcompl, dimmu, joint, argjoint,
grjoint, arggrjoint, hejoint, arghejoint, echo=FALSE)
Arguments
z |
a numeric vector |
dimx |
a vector of dimension for |
dimlam |
a vector of dimension for |
grobj |
gradient of the objective function, see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
constr |
constraint function, see details. |
argconstr |
a list of additional arguments of the constraint function. |
grconstr |
gradient of the constraint function, see details. |
arggrconstr |
a list of additional arguments of the constraint gradient. |
compl |
the complementarity function with (at least) two arguments: |
argcompl |
list of possible additional arguments for |
dimmu |
a vector of dimension for |
joint |
joint function, see details. |
argjoint |
a list of additional arguments of the joint function. |
grjoint |
gradient of the joint function, see details. |
arggrjoint |
a list of additional arguments of the joint gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
heconstr |
Hessian of the constraint function, see details. |
argheconstr |
a list of additional arguments of the constraint Hessian. |
gcompla |
derivative of the complementarity function w.r.t. the first argument. |
gcomplb |
derivative of the complementarity function w.r.t. the second argument. |
hejoint |
Hessian of the joint function, see details. |
arghejoint |
a list of additional arguments of the joint Hessian. |
echo |
a logical to show some traces. |
Details
Compute the SemiSmooth Reformulation of the GNEP: the Generalized Nash equilibrium problem is defined
by objective functions Obj
with player variables x
defined in dimx
and
may have player-dependent constraint functions g
of dimension dimlam
and/or a common shared joint function h
of dimension dimmu
,
where the Lagrange multiplier are lambda
and mu
, respectively,
see F. Facchinei et al.(2009) where there is no joint function.
- Arguments of the Phi function
-
The arguments which are functions must respect the following features
grobj
-
The gradient
Grad Obj
of an objective functionObj
(to be minimized) must have 3 arguments forGrad Obj(z, playnum, ideriv)
: vectorz
, player number, derivative index , and optionnally additional arguments inarggrobj
. constr
-
The constraint function
g
must have 2 arguments: vectorz
, player number, such thatg(z, playnum) <= 0
. Optionnally,g
may have additional arguments inargconstr
. grconstr
-
The gradient of the constraint function
g
must have 3 arguments: vectorz
, player number, derivative index, and optionnally additional arguments inarggrconstr
. compl
It must have two arguments and optionnally additional arguments in
argcompl
. A typical example is the minimum function.joint
-
The constraint function
h
must have 1 argument: vectorz
, such thath(z) <= 0
. Optionnally,h
may have additional arguments inargjoint
. grjoint
-
The gradient of the constraint function
h
must have 2 arguments: vectorz
, derivative index, and optionnally additional arguments inarggrjoint
.
- Arguments of the Jacobian of Phi
-
The arguments which are functions must respect the following features
heobj
It must have 4 arguments: vector
z
, player number, two derivative indexes and optionnally additional arguments inargheobj
.heconstr
It must have 4 arguments: vector
z
, player number, two derivative indexes and optionnally additional arguments inargheconstr
.gcompla
,gcomplb
It must have two arguments and optionnally additional arguments in
argcompl
.hejoint
It must have 3 arguments: vector
z
, two derivative indexes and optionnally additional arguments inarghejoint
.
See the example below.
Value
A vector for funSSR
or a matrix for jacSSR
.
Author(s)
Christophe Dutang
References
F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
See Also
See also GNE.nseq
.
Examples
# (1) associated objective functions
#
dimx <- c(2, 2, 3)
#Gr_x_j O_i(x)
grfullob <- function(x, i, j)
{
x <- x[1:7]
if(i == 1)
{
grad <- 3*(x - 1:7)^2
}
if(i == 2)
{
grad <- 1:7*(x - 1:7)^(0:6)
}
if(i == 3)
{
s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
}
grad[j]
}
#Gr_x_k Gr_x_j O_i(x)
hefullob <- function(x, i, j, k)
{
x <- x[1:7]
if(i == 1)
{
he <- diag( 6*(x - 1:7) )
}
if(i == 2)
{
he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
}
if(i == 3)
{
s <- x[5]^2 + x[6]^2 + x[7]^2
he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
}
he[j,k]
}
# (2) constraint linked functions
#
dimlam <- c(1, 2, 2)
#constraint function g_i(x)
g <- function(x, i)
{
x <- x[1:7]
if(i == 1)
res <- sum( x^(1:7) ) -7
if(i == 2)
res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
if(i == 3)
res <- c(sum(x^2) + 1, 100 - sum(x))
res
}
#Gr_x_j g_i(x)
grfullg <- function(x, i, j)
{
x <- x[1:7]
if(i == 1)
{
grad <- (1:7) * x ^ (0:6)
}
if(i == 2)
{
grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
grad <- cbind(grad, -1)
}
if(i == 3)
{
grad <- cbind(2*x, -1)
}
if(i == 1)
res <- grad[j]
if(i != 1)
res <- grad[j,]
as.numeric(res)
}
#Gr_x_k Gr_x_j g_i(x)
hefullg <- function(x, i, j, k)
{
x <- x[1:7]
if(i == 1)
{
he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
}
if(i == 2)
{
he1 <- matrix(0, 7, 7)
he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
he2 <- matrix(0, 7, 7)
}
if(i == 3)
{
he1 <- diag(rep(2, 7))
he2 <- matrix(0, 7, 7)
}
if(i != 1)
return( c(he1[j, k], he2[j, k]) )
else
return( he1[j, k] )
}
# (3) compute Phi
#
z <- rexp(sum(dimx) + sum(dimlam))
n <- sum(dimx)
m <- sum(dimlam)
x <- z[1:n]
lam <- z[(n+1):(n+m)]
resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
check <- c(grfullob(x, 1, 1) + lam[1] * grfullg(x, 1, 1),
grfullob(x, 1, 2) + lam[1] * grfullg(x, 1, 2),
grfullob(x, 2, 3) + lam[2:3] %*% grfullg(x, 2, 3),
grfullob(x, 2, 4) + lam[2:3] %*% grfullg(x, 2, 4),
grfullob(x, 3, 5) + lam[4:5] %*% grfullg(x, 3, 5),
grfullob(x, 3, 6) + lam[4:5] %*% grfullg(x, 3, 6),
grfullob(x, 3, 7) + lam[4:5] %*% grfullg(x, 3, 7),
phiFB( -g(x, 1), lam[1]),
phiFB( -g(x, 2)[1], lam[2]),
phiFB( -g(x, 2)[2], lam[3]),
phiFB( -g(x, 3)[1], lam[4]),
phiFB( -g(x, 3)[2], lam[5]))
#check
cat("\n\n________________________________________\n\n")
#part A
print(cbind(check, res=as.numeric(resphi))[1:n, ])
#part B
print(cbind(check, res=as.numeric(resphi))[(n+1):(n+m), ])
# (4) compute Jac Phi
#
resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g, grconstr=grfullg,
heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB)
#check
cat("\n\n________________________________________\n\n")
cat("\n\npart A\n\n")
checkA <-
rbind(
c(hefullob(x, 1, 1, 1) + lam[1]*hefullg(x, 1, 1, 1),
hefullob(x, 1, 1, 2) + lam[1]*hefullg(x, 1, 1, 2),
hefullob(x, 1, 1, 3) + lam[1]*hefullg(x, 1, 1, 3),
hefullob(x, 1, 1, 4) + lam[1]*hefullg(x, 1, 1, 4),
hefullob(x, 1, 1, 5) + lam[1]*hefullg(x, 1, 1, 5),
hefullob(x, 1, 1, 6) + lam[1]*hefullg(x, 1, 1, 6),
hefullob(x, 1, 1, 7) + lam[1]*hefullg(x, 1, 1, 7)
),
c(hefullob(x, 1, 2, 1) + lam[1]*hefullg(x, 1, 2, 1),
hefullob(x, 1, 2, 2) + lam[1]*hefullg(x, 1, 2, 2),
hefullob(x, 1, 2, 3) + lam[1]*hefullg(x, 1, 2, 3),
hefullob(x, 1, 2, 4) + lam[1]*hefullg(x, 1, 2, 4),
hefullob(x, 1, 2, 5) + lam[1]*hefullg(x, 1, 2, 5),
hefullob(x, 1, 2, 6) + lam[1]*hefullg(x, 1, 2, 6),
hefullob(x, 1, 2, 7) + lam[1]*hefullg(x, 1, 2, 7)
),
c(hefullob(x, 2, 3, 1) + lam[2:3] %*% hefullg(x, 2, 3, 1),
hefullob(x, 2, 3, 2) + lam[2:3] %*% hefullg(x, 2, 3, 2),
hefullob(x, 2, 3, 3) + lam[2:3] %*% hefullg(x, 2, 3, 3),
hefullob(x, 2, 3, 4) + lam[2:3] %*% hefullg(x, 2, 3, 4),
hefullob(x, 2, 3, 5) + lam[2:3] %*% hefullg(x, 2, 3, 5),
hefullob(x, 2, 3, 6) + lam[2:3] %*% hefullg(x, 2, 3, 6),
hefullob(x, 2, 3, 7) + lam[2:3] %*% hefullg(x, 2, 3, 7)
),
c(hefullob(x, 2, 4, 1) + lam[2:3] %*% hefullg(x, 2, 4, 1),
hefullob(x, 2, 4, 2) + lam[2:3] %*% hefullg(x, 2, 4, 2),
hefullob(x, 2, 4, 3) + lam[2:3] %*% hefullg(x, 2, 4, 3),
hefullob(x, 2, 4, 4) + lam[2:3] %*% hefullg(x, 2, 4, 4),
hefullob(x, 2, 4, 5) + lam[2:3] %*% hefullg(x, 2, 4, 5),
hefullob(x, 2, 4, 6) + lam[2:3] %*% hefullg(x, 2, 4, 6),
hefullob(x, 2, 4, 7) + lam[2:3] %*% hefullg(x, 2, 4, 7)
),
c(hefullob(x, 3, 5, 1) + lam[4:5] %*% hefullg(x, 3, 5, 1),
hefullob(x, 3, 5, 2) + lam[4:5] %*% hefullg(x, 3, 5, 2),
hefullob(x, 3, 5, 3) + lam[4:5] %*% hefullg(x, 3, 5, 3),
hefullob(x, 3, 5, 4) + lam[4:5] %*% hefullg(x, 3, 5, 4),
hefullob(x, 3, 5, 5) + lam[4:5] %*% hefullg(x, 3, 5, 5),
hefullob(x, 3, 5, 6) + lam[4:5] %*% hefullg(x, 3, 5, 6),
hefullob(x, 3, 5, 7) + lam[4:5] %*% hefullg(x, 3, 5, 7)
),
c(hefullob(x, 3, 6, 1) + lam[4:5] %*% hefullg(x, 3, 6, 1),
hefullob(x, 3, 6, 2) + lam[4:5] %*% hefullg(x, 3, 6, 2),
hefullob(x, 3, 6, 3) + lam[4:5] %*% hefullg(x, 3, 6, 3),
hefullob(x, 3, 6, 4) + lam[4:5] %*% hefullg(x, 3, 6, 4),
hefullob(x, 3, 6, 5) + lam[4:5] %*% hefullg(x, 3, 6, 5),
hefullob(x, 3, 6, 6) + lam[4:5] %*% hefullg(x, 3, 6, 6),
hefullob(x, 3, 6, 7) + lam[4:5] %*% hefullg(x, 3, 6, 7)
),
c(hefullob(x, 3, 7, 1) + lam[4:5] %*% hefullg(x, 3, 7, 1),
hefullob(x, 3, 7, 2) + lam[4:5] %*% hefullg(x, 3, 7, 2),
hefullob(x, 3, 7, 3) + lam[4:5] %*% hefullg(x, 3, 7, 3),
hefullob(x, 3, 7, 4) + lam[4:5] %*% hefullg(x, 3, 7, 4),
hefullob(x, 3, 7, 5) + lam[4:5] %*% hefullg(x, 3, 7, 5),
hefullob(x, 3, 7, 6) + lam[4:5] %*% hefullg(x, 3, 7, 6),
hefullob(x, 3, 7, 7) + lam[4:5] %*% hefullg(x, 3, 7, 7)
)
)
print(resjacphi[1:n, 1:n] - checkA)
cat("\n\n________________________________________\n\n")
cat("\n\npart B\n\n")
checkB <-
rbind(
cbind(c(grfullg(x, 1, 1), grfullg(x, 1, 2)), c(0, 0), c(0, 0), c(0, 0), c(0, 0)),
cbind(c(0, 0), rbind(grfullg(x, 2, 3), grfullg(x, 2, 4)), c(0, 0), c(0, 0)),
cbind(c(0, 0, 0), c(0, 0, 0), c(0, 0, 0),
rbind(grfullg(x, 3, 5), grfullg(x, 3, 6), grfullg(x, 3, 7)))
)
print(resjacphi[1:n, (n+1):(n+m)] - checkB)
cat("\n\n________________________________________\n\n")
cat("\n\npart C\n\n")
gx <- c(g(x,1), g(x,2), g(x,3))
checkC <-
- t(
cbind(
rbind(
grfullg(x, 1, 1) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 2) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 3) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 4) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 5) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 6) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 7) * GrAphiFB(-gx, lam)[1]
),
rbind(
grfullg(x, 2, 1) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 2) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 3) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 4) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 5) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 6) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 7) * GrAphiFB(-gx, lam)[2:3]
),
rbind(
grfullg(x, 3, 1) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 2) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 3) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 4) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 5) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 6) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 7) * GrAphiFB(-gx, lam)[4:5]
)
)
)
print(resjacphi[(n+1):(n+m), 1:n] - checkC)
cat("\n\n________________________________________\n\n")
cat("\n\npart D\n\n")
checkD <- diag(GrBphiFB(-gx, lam))
print(resjacphi[(n+1):(n+m), (n+1):(n+m)] - checkD)
Nikaido Isoda Reformulation
Description
functions of the Nikaido Isoda Reformulation of the GNEP
Usage
gapVIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
gradxgapVIR(x, y, dimx, grobj, arggrobj, heobj, argheobj, param=list(), echo=FALSE)
gradygapVIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
fpVIR(x, dimx, obj, argobj, joint, argjoint,
grobj, arggrobj, jacjoint, argjacjoint, param=list(),
echo=FALSE, control=list(), yinit=NULL, optim.method="default")
Arguments
x , y |
a numeric vector. |
dimx |
a vector of dimension for |
obj |
objective function (to be minimized), see details. |
argobj |
a list of additional arguments. |
grobj |
gradient of the objective function, see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
joint |
joint function, see details. |
argjoint |
a list of additional arguments of the joint function. |
jacjoint |
gradient of the joint function, see details. |
argjacjoint |
a list of additional arguments of the joint Jacobian. |
param |
a list of parameters. |
control |
a list with control parameters for the fixed point algorithm. |
yinit |
initial point when computing the fixed-point function. |
optim.method |
optimization method when computing the fixed-point function. |
echo |
a logical to show some traces. |
Details
gapVIR
computes the Nikaido Isoda function of the GNEP, while gradxgapVIR
and gradygapVIR
give its gradient with respect to x
and y
.
fpVIR
computes the fixed-point function.
Value
A vector for funSSR
or a matrix for jacSSR
.
Author(s)
Christophe Dutang
References
A. von Heusinger & J. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .
F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
See Also
See also GNE.fpeq
.
Benchmark function
Description
Benchmark function to compare GNE computational methods.
Usage
bench.GNE.nseq(xinit, ..., echo=FALSE, control=list())
bench.GNE.ceq(xinit, ..., echo=FALSE, control=list())
bench.GNE.fpeq(xinit, ..., echo=FALSE, control.outer=list(),
control.inner=list())
bench.GNE.minpb(xinit, ..., echo=FALSE, control.outer=list(),
control.inner=list())
Arguments
xinit |
a numeric vector for the initial point. |
... |
further arguments to be passed to |
echo |
a logical to get some traces of the benchmark computation. |
control , control.outer , control.inner |
a list with control
parameters to be passed to |
Details
Computing generalized Nash Equilibrium can be done in three different approaches.
- (i) extended KKT system
It consists in solving the non smooth extended Karush-Kuhn-Tucker (KKT) system
\Phi(z)=0
.func1
isPhi
andfunc2
isJac Phi
.- (ii) fixed point approach
It consists in solving equation
y(x)=x
.func1
isy
andfunc2
is ?- (iii) gap function minimization
It consists in minimizing a gap function
min V(x)
.func1
isV
andfunc2
isGrad V
.
Value
For GNE.bench.ceq
and GNE.bench.nseq
, a data.frame
is returned with columns:
method
the name of the method.
fctcall
the number of calls of the function.
jaccall
the number of calls of the Jacobian.
comptime
the computation time.
normFx
the norm of the merit function at the final iterate.
code
the exit code.
localmethods
the name of the local method.
globalmethods
the name of the globalization method.
x
the final iterate.
For GNE.bench.minpb
, a data.frame
is returned with columns:
method
the name of the method.
minfncall.outer
the number of calls of the merit function.
grminfncall.outer
the number of calls of the gradient of the merit function.
gapfncall.inner
the number of calls of the gap function.
grgapfncall.outer
the number of calls of the gradient of the gap function.
comptime
the computation time.
normFx
the norm of the merit function at the final iterate.
code
the exit code.
x
the final iterate.
For GNE.bench.fpeq
, a data.frame
is returned with columns:
method
the name of the method.
fpfncall.outer
the number of calls of the fixed-point function.
merfncall.outer
the number of calls of the merit function.
gapfncall.inner
the number of calls of the gap function.
grgapfncall.outer
the number of calls of the gradient of the gap function.
comptime
the computation time.
normFx
the norm of the merit function at the final iterate.
code
the exit code.
x
the final iterate.
Author(s)
Christophe Dutang
References
F. Facchinei, A. Fischer & V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.
A. von Heusinger & J. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .
See Also
See GNE.fpeq
, GNE.minpb
, GNE.ceq
and GNE.nseq
for other approaches.
Complementarity functions
Description
Classic Complementarity functions
Usage
phiFB(a, b)
GrAphiFB(a, b)
GrBphiFB(a, b)
phipFB(a, b, p)
GrAphipFB(a, b, p)
GrBphipFB(a, b, p)
phirFB(a, b)
GrAphirFB(a, b)
GrBphirFB(a, b)
phiMin(a, b)
GrAphiMin(a, b)
GrBphiMin(a, b)
phiMan(a, b, f, fprime)
GrAphiMan(a, b, f, fprime)
GrBphiMan(a, b, f, fprime)
phiKK(a, b, lambda)
GrAphiKK(a, b, lambda)
GrBphiKK(a, b, lambda)
phiLT(a, b, q)
GrAphiLT(a, b, q)
GrBphiLT(a, b, q)
compl.par(type=c("FB", "pFB", "rFB", "Min", "Man", "LT", "KK"),
p, f, fprime, q, lambda)
## S3 method for class 'compl.par'
print(x, ...)
## S3 method for class 'compl.par'
summary(object, ...)
Arguments
a |
first parameter. |
b |
second parameter. |
f , fprime |
a univariate function and its derivative. |
lambda |
a parameter in [0, 2[. |
q |
a parameter >1. |
p |
a parameter >0. |
type |
a character string for the complementarity
function type: either |
x , object |
an object of class |
... |
further arguments to pass to |
Details
We implement 5 complementarity functions From Facchinei & Pang (2003).
- (i)
phiFB
the Fischer-Burmeister complementarity function
\sqrt{a^2+b^2} - (a+b)
. The penalized version isphiFB(a,b) - p*max(a,0)*max(b,0)
, whereas the regularized version isphiFB(a,b) - epsilon
.- (ii)
phiMin
the minimum complementarity function
\min(a,b)
.- (iii)
phiMan
the Mangasarian's family of complementarity function
f(|a-b|) - f(a) - f(b)
, typicallyf(t)=t
orf(t)=t^3
.- (iv)
phiKK
the Kanzow-Kleinmichel complementarity function
(\sqrt( (a-b)^2 + 2*\lambda*a*b ) - (a+b) ) / (2-\lambda)
.- (v)
phiLT
the Luo-Tseng complementarity function
(a^q + b^q)^(1/q) - (a+b)
.
GrAXXX
and GrBXXX
implements the derivative of the complementarity
function XXX
with respect to a
and b
respectively.
compl.par
creates an object of class "compl.par"
with attributes
"type"
a character string and "fun","grA","grB"
the corresponding
functions for a given type.
Optional arguments are also available, e.g. lambda for the KK complementarity
function.
Value
A numeric or an object of class "compl.par"
.
Author(s)
Christophe Dutang
References
F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag (New York 2003).
See Also
See also GNE.nseq
.
Examples
phiFB(1, 2)
phiLT(1, 2, 2)
phiKK(1, 2, 1)
-2*phiMin(1, 2)
phiMan(1, 2, function(t) t)
complFB <- compl.par("FB")
summary(complFB)
complKK <- compl.par("KK", lambda=1)
summary(complKK)
complKK$fun(1, 1, complKK$lambda)
complFB$fun(1, 1)
Solving non linear equations
Description
Non linear Solving methods
Usage
eqsolve(xinit, f, jac,
method=c("Newton", "Levenberg-Marquardt", "Broyden"),
global=c("line search", "none"), control=list())
Arguments
xinit |
initial point. |
f |
the function for which we search roots. |
jac |
the Jacobian of the function |
method |
a character string specifying the method to use: either
|
global |
a character string for the globalization method to be used:
either |
control |
a list for the control parameters. See details. |
Details
The control
argument is a list that can supply any of the following components:
tol
The absolute convergence tolerance. Default to 1e-6.
maxit
The maximum number of iterations. Default to 100.
echo
A logical or an integer (0, 1, 2, 3, 4) to print traces. Default to
FALSE
, i.e. 0.echofile
A character string to store the traces in that file. Default to
NULL
.echograph
A character string to plot iter-by-iter information. Either
"NULL"
(default), or"line"
for line search plot or"trust"
for trust region plots.sigma
Reduction factor for the geometric linesearch. Default to 0.5.
btol
The backtracking tolerance. Default to 0.01.
delta
The exponent parameter for the LM parameter, should in
[1,2]
. Default to 2.initlnsrch
The initial integer for starting the line search. Default to 0.
minstep
The minimal step. Default to 0.001.
Value
A list with components:
par
The best set of parameters found.
counts
A two-element integer vector giving the number of calls to
phi
andjacphi
respectively.iter
The iteration number.
code
0 if convergence, 1 if
maxit
is reached, 10 iftol
is not reached and 11 for both.
Author(s)
Christophe Dutang
See Also
See nleqslv
from the package of the same name.
Potential reduction algorithm utility functions
Description
Functions for the potential reduction algorithm
Usage
potential.ce(u, n, zeta)
gradpotential.ce(u, n, zeta)
psi.ce(z, dimx, dimlam, Hfinal, argfun, zeta)
gradpsi.ce(z, dimx, dimlam, Hfinal, jacHfinal, argfun, argjac, zeta)
Arguments
u |
a numeric vector : |
n |
a numeric for the size of |
zeta |
a positive parameter. |
z |
a numeric vector : |
dimx |
a numeric vector with the size of each components of |
dimlam |
a numeric vector with the size of each components of |
Hfinal |
the root function. |
argfun |
a list of additionnals arguments for |
jacHfinal |
the Jacobian of the root function. |
argjac |
a list of additionnals arguments for |
Details
potential.ce
is the potential function for the GNEP, and gradpotential.ce
its gradient.
psi.ce
is the application of the potential function for Hfinal
, and gradpsi.ce
its gradient.
Value
A numeric or a numeric vector.
Author(s)
Christophe Dutang
References
S. Bellavia, M. Macconi, B. Morini (2003), An affine scaling trust-region approach to bound-constrained nonlinear systems, Applied Numerical Mathematics 44, 257-280
A. Dreves, F. Facchinei, C. Kanzow and S. Sagratella (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization 21(3), 1082-1108.
See Also
See also GNE.ceq
.
Projection of a point on a set
Description
Projection of a point z
on the set defined by the constraints g(x) <= 0
.
Usage
projector(z, g, jacg, bounds=c(0, 10), echo=FALSE, ...)
Arguments
z |
The point to project. |
g |
The constraint function. |
jacg |
The jacobian of the constraint function. |
bounds |
bounds for the randomized initial iterate. |
echo |
a logical to plot traces. |
... |
further arguments to pass to |
Details
Find a point x
in the set K
which minimizes the Euclidean distance ||z - x||^2
,
where the set K
is x, g(x) <= 0
. The Optimization is carried out by the constrOptim.nl
function of the package alabama.
Value
A vector x
.
Author(s)
Christophe Dutang
See Also
See also GNE
.
Examples
# 1. the rectangle set
#
g <- function(x)
c(x - 3, 1 - x)
jacg <- function(x)
rbind(
diag( rep(1, length(x)) ),
diag( rep(-1, length(x)) )
)
z <- runif(2, 3, 4)
#computation
projz <- projector(z, g, jacg)
#plot
plot(c(1, 3), c(1, 1), xlim=c(0, 4), ylim=c(0,4), type="l", col="blue")
lines(c(3, 3), c(1, 3), col="blue")
lines(c(3, 1), c(3, 3), col="blue")
lines(c(1, 1), c(3, 1), col="blue")
points(z[1], z[2], col="red")
points(projz[1], projz[2], col="red", pch="+")
z <- runif(2) + c(1, 0)
projz <- projector(z, g, jacg)
points(z[1], z[2], col="green")
points(projz[1], projz[2], col="green", pch="+")
# 2. the circle set
#
g <- function(x) sum((x-2)^2)-1
jacg <- function(x) as.matrix( 2*(x-2) )
z <- runif(2) + c(1, 0)
#computation
projz <- projector(z, g, jacg)
#plot
plot(c(1, 3), c(1, 1), xlim=c(0, 4), ylim=c(0,4), type="n", col="blue")
symbols(2, 2, circles=1, fg="blue", add=TRUE, inches=FALSE)
points(z[1], z[2], col="red")
points(projz[1], projz[2], col="red", pch="+")
z <- c(runif(1, 3, 4), runif(1, 1, 2))
projz <- projector(z, g, jacg)
points(z[1], z[2], col="green")
points(projz[1], projz[2], col="green", pch="+")
Rejection method for random generation.
Description
Generate random variate satisfying the constraint function by the Rejection algorithm.
Usage
rejection(constr, nvars, LB=0, UB=1, ..., echo=FALSE,
method=c("unif","norm", "normcap"), control=list())
Arguments
constr |
Constraint function |
nvars |
Number of variables |
LB |
Lower bound |
UB |
Upper bound |
... |
further arguments to pass to |
echo |
a logical to plot traces. |
method |
the distribution to draw random variates, either |
control |
a named list containing the mean and the standard deviation
of the normal distribution used if |
Details
Draw random variates x
until all the components of constr(x)
are negative. The distribution
to draw random variates can be the uniform distribution on the hypercube defined by LB
and UB
,
the normal distribution centered in (LB + UB)/2
and standard deviation (UB - LB) / (4*1.9600)
and the capped normal distribution (intended for debug use).
Value
A vector x
which verifies the constraints constr(x) <= 0
.
Author(s)
Christophe Dutang
See Also
See also GNE
.
Examples
f <- function(x) x[1]^2 + x[2]^2 - 1
rejection(f, 2, -3, 3, method="unif")
rejection(f, 2, -3, 3, method="norm")
Step functions
Description
Step functions for relaxation methods
Usage
purestep(k)
decrstep(k, param)
decrstep5(k)
decrstep10(k)
decrstep20(k)
Arguments
k |
iteration number. |
param |
parameter for the decreasing step function after which the step decreases. |
Details
The decrstep
function is a decreasing step serie such that decrstep(k)
equals to 1/2/(k - param)
when k>param
, 1/2, otherwise.
Functions decrstep5, decrstep10, decrstep20
are just wrappers of
decrstep
.
The purestep
function implements a constant step serie equaled to 1.
Value
A numeric.
Author(s)
Christophe Dutang
See Also
Examples
cbind(
purestep(1:20),
decrstep(1:20, 7),
decrstep5(1:20),
decrstep10(1:20),
decrstep20(1:20)
)