Package 'GLCMTextures'

July 21, 2025

Version 0.6.2

Description Calculates grey level co-occurrence matrix (GLCM) based texture measures (Hall-Beyer (2017) https://prism.ucalgary.ca/bitstream/handle/1880/51900/texture%20tutorial%20v%203_0%20180206.pdf; Haral-

ick et al. (1973) <doi:10.1109/TSMC.1973.4309314>) of raster layers using a sliding rectangular window. It also includes functions to quantize a raster into grey levels as well as tabulate a glcm and calculate glcm texture metrics for a matrix.

License GPL (>= 3) Encoding UTF-8 RoxygenNote 7.3.2

BugReports https://github.com/ailich/GLCMTextures/issues

Depends R (>= 3.5.0), terra **SystemRequirements** C++17 **LinkingTo** Rcpp, RcppArmadillo

Title GLCM Textures of Raster Layers

Imports Rcpp, raster

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

URL https://ailich.github.io/GLCMTextures/,
 https://github.com/ailich/GLCMTextures

VignetteBuilder knitr Config/testthat/edition 3 NeedsCompilation yes

Author Alexander Ilich [aut, cre] (ORCID:

<https://orcid.org/0000-0003-1758-8499>)

Maintainer Alexander Ilich <ailich@usf.edu>

Repository CRAN

Date/Publication 2025-05-22 05:00:24 UTC

2 glcm_metrics

Contents

quantize_raster	1
glcm_metrics glcm_textures glcm_textures_wholeimage	

Description

Calculates the GLCM Texture Metrics from a GLCM

Usage

```
glcm_metrics(
  GLCM,
metrics = c("glcm_contrast", "glcm_dissimilarity", "glcm_homogeneity", "glcm_ASM",
        "glcm_entropy", "glcm_mean", "glcm_variance", "glcm_correlation"),
        average = FALSE,
    impute_corr = FALSE
)
```

Arguments

GLCM	A numeric matrix or list of matrices representing a Normalized GLCM.
metrics	A vector of texture metrics to return. Valid entries include "glcm_contrast", "glcm_dissimilarity", "glcm_homogeneity", "glcm_ASM", "glcm_entropy", "glcm_mean", "glcm_variance", "glcm_correlation".
average	Logical indicating whether to average metrics across the supplied GLCMs
impute_corr	logical indicating whether glcm correlation should be filled with zero in the case where all values are the same (default=FALSE). Strictly glcm correlation is NA in this case but the limit approaches zero.

Value

GLCM based texture measures as a numeric vector.

References

Hall-Beyer, M., 2017. GLCM Texture: A Tutorial v. 3.0. University of Calgary, Alberta, Canada. Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 610–621. https://doi.org/10.1109/TSMC.1973.4309314

glcm_textures 3

Examples

```
test_matrix<- matrix(data=c(2,0,1,3,0,0,0,3,2), nrow = 3, ncol=3)
horizontal_glcm<- make_glcm(test_matrix, n_levels = 4,
shift = c(1,0), normalize = TRUE)
metrics<-glcm_metrics(horizontal_glcm, metrics= c("glcm_contrast",
    "glcm_dissimilarity", "glcm_homogeneity", "glcm_ASM",
    "glcm_entropy", "glcm_mean", "glcm_variance", "glcm_correlation"))</pre>
```

glcm_textures

Calculates GLCM texture metrics of a Raster Layer

Description

Calculates GLCM texture metrics of a RasterLayer over a sliding rectangular window

Usage

```
glcm_textures(
  w = c(3, 3),
  n_levels,
  shift = list(c(1, 0), c(1, 1), c(0, 1), c(-1, 1)),
 metrics = c("glcm_contrast", "glcm_dissimilarity", "glcm_homogeneity", "glcm_ASM",
    "glcm_entropy", "glcm_mean", "glcm_variance", "glcm_correlation"),
  quant_method = NULL,
  min_val = NULL,
  max_val = NULL,
  maxcell = Inf,
  na.rm = FALSE,
  impute_corr = FALSE,
  include_scale = FALSE,
  filename = NULL,
  overwrite = FALSE,
  quantization = NULL,
  wopt = list()
)
```

Arguments

r

A single layer SpatRaster, RasterLayer, or matrix. If already quantized set quant_method to "none". The valid range of values for a quantized raster is from 0 to n_levels-1 (e.g. a raster with 32 grey levels would have a valid range of 0-31).

W

A vector of length 2 specifying the dimensions of the rectangular window to use where the first number is the number of rows and the second number is the number of columns. Window size must be an odd number. A special case is when w is NULL a single value of each texture will be calculated for the entire image.

4 glcm_textures

n_levels	Number of grey levels used in the quantization (Typically set to 16 or 32).
shift	A vector of length 2, or a list of vectors each of length 2 specifying the relationship between neighboring pixel to the reference pixel. The first number represents the shift in the x direction and the second number represents the shift in the y direction, where up and right are positive. For example $c(1,0)$ is the pixel directly to the right. The GLCM is made symmetrical by counting each pair twice, once "forwards" and once "backwards" by interchanging reference and neighbor pixels. Therefore a shift directly to the right $c(1,0)$ is equivalent to a shift directly to the left $c(-1,0)$. To average over "all directions" you can use shift=list($c(1,0)$, $c(1,1)$, $c(0,1)$, $c(-1,1)$), which is the default.
metrics	A vector of glcm texture metrics to return. Valid entries include "glcm_contrast", "glcm_dissimilarity", "glcm_homogeneity", "glcm_ASM" (angular second moment), "glcm_entropy", "glcm_mean", "glcm_variance", "glcm_correlation".
quant_method	quantization method (either "range", "prob", or "none"). "range" quantization will create bins that cover a range of equal size. "prob" performs equal probability quantization and will use quantiles to create bins with approximately equal number of samples. "none" means the layer has already been quantized.
min_val	minimum value for equal range quantization (if not supplied, the minimum value of the raster is used)
max_val	maximum value for equal range quantization (if not supplied, the maximum value of the raster is used)
maxcell	positive integer used to take a regular sample for quantization if "prob" is used as quant_method (default is Inf)
na.rm	a logical value indicating whether NA values should be stripped before the computation proceeds (default=FALSE)
impute_corr	logical indicating whether glcm correlation should be filled with zero in the case where all values are the same (default=FALSE). Strictly glcm correlation is NA in this case but the limit approaches zero.
include_scale	Logical indicating whether to append window size to the layer names (default = FALSE).
filename	character Output filename. Can be a single filename, or as many filenames as there are layers to write a file for each layer
overwrite	logical. If TRUE, filename is overwritten (default is FALSE).
quantization	deprecated. Use 'quant_method'
wopt	list with named options for writing files as in writeRaster

Value

a SpatRaster or Raster* Object if w is not NULL. If w is NULL, a numeric vector of texture measures.

References

Hall-Beyer, M., 2017. GLCM Texture: A Tutorial v. 3.0. University of Calgary, Alberta, Canada. Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 610–621. https://doi.org/10.1109/TSMC.1973.4309314

Examples

```
r<- rast(volcano, extent= ext(2667400, 2667400 + ncol(volcano)*10, 6478700, 6478700 + nrow(volcano)*10), crs = "EPSG:27200") txt <- glcm_textures(r, w = c(3,5), n_levels = 16, quant_method = "prob", shift = list(c(1, 0), c(1, 1), c(0, 1), c(-1, 1))) plot(txt)
```

glcm_textures_wholeimage

Calculates GLCM texture metrics of a Raster Layer

Description

Calculates GLCM texture metrics of a RasterLayer over a sliding rectangular window

Usage

```
glcm_textures_wholeimage(
    r,
    n_levels,
    shift,
    metrics,
    quant_method,
    min_val,
    max_val,
    maxcell,
    na.rm,
    impute_corr,
    wopt
)
```

Arguments

r

A single layer SpatRaster or RasterLayer. If already quantized set quant_method to "none". The valid range of values for a quantized raster is from 0 to n_levels-1 (e.g. a raster with 32 grey levels would have a valid range of 0-31).

n_levels

Number of grey levels used in the quantization (Typically set to 16 or 32).

shift

A vector of length 2, or a list of vectors each of length 2 specifying the relationship between neighboring pixel to the reference pixel. The first number represents the shift in the x direction and the second number represents the shift in the y direction, where up and right are positive. For example c(1,0) is the pixel directly to the right. The GLCM is made symmetrical by counting each pair twice, once "forwards" and once "backwards" by interchanging reference and neighbor pixels. Therefore a shift directly to the right c(1,0) is equivalent to a shift directly to the left c(-1,0). To average over "all directions" you can use shift=list(c(1,0), c(1,1), c(0,1), c(-1,1)), which is the default.

6 make_glcm

metrics	A vector of glcm texture metrics to return. Valid entries include "glcm_contrast", "glcm_dissimilarity", "glcm_homogeneity", "glcm_ASM" (angular second moment), "glcm_entropy", "glcm_mean", "glcm_variance", "glcm_correlation".
quant_method	quantization method (either "range", "prob", or "none"). "range" quantization will create bins that cover a range of equal size. "prob" performs equal probability quantization and will use quantiles to create bins with approximately equal number of samples. "none" means the layer has already been quantized.
min_val	minimum value for equal range quantization (if not supplied, the minimum value of the raster is used)
max_val	maximum value for equal range quantization (if not supplied, the maximum value of the raster is used)
maxcell	positive integer used to take a regular sample for quantization if "prob" is used as quant_method (default is Inf)
na.rm	a logical value indicating whether NA values should be stripped before the computation proceeds (default=FALSE)
impute_corr	logical indicating whether glcm correlation should be filled with zero in the case where all values are the same. Strictly glcm correlation is NA in this case but the limit approaches zero.
wopt	list with named options for writing files as in writeRaster

Value

a vector of texture metrics

References

Hall-Beyer, M., 2017. GLCM Texture: A Tutorial v. 3.0. University of Calgary, Alberta, Canada.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 610–621. https://doi.org/10.1109/TSMC.1973.4309314

make_glcm	Creates a symmetrical normalized GLCM for a given matrix and shift

Description

Creates a symmetrical normalized GLCM for a given matrix and shift

Usage

```
make_glcm(x, n_levels, shift, na.rm = FALSE, normalize = TRUE)
```

quantize_raster 7

Arguments

n_levels

x a matrix, SpatRaster, or RasterLayer containing integers representing quantized values. The valid range of values is from 0 to n_levels-1 (e.g. a matrix with 32 grey levels would have a valid range of 0-31).

Number of grey levels used in the quantization

shift A vector of length 2 specifying the relationship between neighboring pixel to

the reference pixel. The first number represents the shift in the x direction and the second number represents the shift in the y direction, where up and right are positive. For example c(1,0) is the pixel directly to the right. The GLCM is made symmetrical by counting each pair twice, once "forwards" and once "backwards" by interchanging reference and neighbor pixels. Therefore a shift directly to the right c(1,0) is equivalent to a shift directly to the left c(-1,0)

na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds (default=FALSE)

normalize a logical specifying whether to normalize the counts to probabilities by dividing

by the sum of the GLCM (TRUE, the default) or to express the GLCM as counts

(FALSE)

Value

A symmetric GLCM as a matrix

References

Hall-Beyer, M., 2017. GLCM Texture: A Tutorial v. 3.0. University of Calgary, Alberta, Canada.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 610–621. https://doi.org/10.1109/TSMC.1973.4309314

Examples

```
test_matrix<- matrix(data=c(2,0,1,3,0,0,0,3,2), nrow = 3, ncol=3)
# Tabulate a GLCM of counts
horizontal_glcm_counts<- make_glcm(test_matrix, n_levels = 4, shift = c(1,0), normalize = FALSE)
# Calculate a normalized GLCM of probabilities
horizontal_glcm_norm<- make_glcm(test_matrix, n_levels = 4, shift = c(1,0), normalize = TRUE)</pre>
```

quantize_raster Quantizes raster to a set number of discrete levels

Description

Quantizes raster to a set number of discrete levels starting at 0. There are 2 methods of quantization are available: "equal range" and "equal prob"

8 quantize_raster

Usage

```
quantize_raster(
    r,
    n_levels,
    quant_method = NULL,
    min_val = NULL,
    max_val = NULL,
    maxcell = Inf,
    filename = NULL,
    overwrite = FALSE,
    method = NULL,
    wopt = list()
)
```

Arguments

r A single layer SpatRaster, RasterLayer, or matrix.

n_levels number of levels to quantize to

quantization method (either "range" or "prob"). "range" quantization will create

bins that cover a range of equal size. "prob" performs equal probability quantization and will use quantiles to create bins with approximately equal number of

samples.

min_val minimum value for equal range quantization (if not supplied, the minimum value

of the raster is used)

max_val maximum value for equal range quantization (if not supplied, the maximum

value of the raster is used)

maxcell positive integer used to take a regular sample of x if "prob" is used as 'quant_method'

(default is Inf)

filename character Output filename.

overwrite logical. If TRUE, filename is overwritten (default is FALSE).

method deprecated. Use 'quant_method'

wopt list with named options for writing files as in writeRaster

Details

Equal probability quantization is the method recommended in Haralick et al., 1973. However, equal range may be more desirable if making comparisons across several different rasters where you need the gray levels to correspond in a consistent way to the original data, as you can supply the global max/min or the theoretical max/min values that could occur. When equal probability quantization is used, quantiles are generated using type 8 as recommended by Hyndman and Fan (1996). This method provides estimates that are approximately median-unbiased regardless of the distribution of x.

Value

a single layer SpatRaster or RasterLayer with integer values ranging from 0 to n_levels-1

quantize_raster 9

References

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 610–621. https://doi.org/10.1109/TSMC.1973.4309314 Hyndman, R.J., Fan, Y., 1996. Sample Quantiles in Statistical Packages. The American Statistician 50, 361–365. https://doi.org/10.1080/00031305.1996.10473566

Examples

```
r<- rast(volcano, extent= ext(2667400, 2667400 + ncol(volcano)*10,
6478700, 6478700 + nrow(volcano)*10),
crs = "EPSG:27200")
rq1 <- quantize_raster(r = r, n_levels = 16, quant_method = "prob")
rq2 <- quantize_raster(r = r, n_levels = 16, quant_method = "range")</pre>
```

Index

```
glcm_metrics, 2
glcm_textures, 3
glcm_textures_wholeimage, 5
make_glcm, 6
quantize_raster, 7
```