Title: | Geographical Detectors for Assessing Spatial Factors |
Version: | 10.8 |
Description: | Geographical detectors for measuring spatial stratified heterogeneity, as described in Jinfeng Wang (2010) <doi:10.1080/13658810802443457> and Jinfeng Wang (2016) <doi:10.1016/j.ecolind.2016.02.052>. Includes the optimal discretization of continuous data, four primary functions of geographical detectors, comparison of size effects of spatial unit and the visualizations of results. To use the package and to refer the descriptions of the package, methods and case datasets, please cite Yongze Song (2020) <doi:10.1080/15481603.2020.1760434>. The model has been applied in factor exploration of road performance and multi-scale spatial segmentation for network data, as described in Yongze Song (2018) <doi:10.3390/rs10111696> and Yongze Song (2020) <doi:10.1109/TITS.2020.3001193>, respectively. |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
URL: | https://github.com/ausgis/GD, https://ausgis.github.io/GD/ |
BugReports: | https://github.com/ausgis/GD/issues |
Depends: | R (≥ 4.1.0) |
Imports: | BAMMtools, graphics, stats, utils |
Suggests: | gdverse (≥ 1.3), knitr, rmarkdown |
LazyData: | true |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2024-11-20 13:32:04 UTC; dell |
Author: | Yongze Song |
Maintainer: | Wenbo Lv <lyu.geosocial@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2024-11-20 13:50:02 UTC |
Spatial datasets of H1N1 flu incidences
Description
The "H1N1" dataset provides provincial statistical incidences of influenza A virus subtype H1N1 in China for 2013. It includes H1N1 incidences and related variables across three different spatial grid sizes: 50 km, 100 km, and 150 km. Detailed references and data sources will be added.
Usage
h1n1_50
h1n1_100
h1n1_150
Format
h1n1_50
A data frame with 3977 rows and 11 variables (50 km grid size).
h1n1_100
A data frame with 987 rows and 11 variables (100 km grid size).
h1n1_150
A data frame with 443 rows and 11 variables (150 km grid size).
Spatial datasets of vegetation index changes.
Description
The "NDVI" dataset contains NDVI change data from 2010 to 2014 in Inner Mongolia, China. It includes NDVI change and potential variables sampled from six spatial grid sizes: 5 km, 10 km, 20 km, 30 km, 40 km, and 50 km. References for more details and data sources will be provided.
Usage
ndvi_5
ndvi_10
ndvi_20
ndvi_30
ndvi_40
ndvi_50
Format
ndvi_5
A data frame with 46,295 rows and 7 variables (5 km grid size).
ndvi_10
A data frame with 11,567 rows and 7 variables (10 km grid size).
ndvi_20
A data frame with 2,892 rows and 7 variables (20 km grid size).
ndvi_30
A data frame with 1,290 rows and 7 variables (30 km grid size).
ndvi_40
A data frame with 713 rows and 7 variables (40 km grid size).
ndvi_50
A data frame with 469 rows and 7 variables (50 km grid size).
Generates discretization parameters for continuous data.
Description
Function for discretizing continuous data and obtaining the different outputs, including discretization intervals, numbers of values within intervals, and visualization of discretization.
Usage
disc(var, n, method = "quantile", ManualItv)
Arguments
var |
A numeric vector of continuous variable |
n |
The numeber of intervals |
method |
A character of discretization method |
ManualItv |
A numeric vector of manual intervals |
Examples
## method is default (quantile); number of intervals is 4
ds1 <- disc(ndvi_40$Tempchange, 4)
ds1
## method is equal; number of intervals is 4
ds2 <- disc(ndvi_40$Tempchange, 4, method = "equal")
## method is manual; number of intervals is 4
manualitv1 <- c(-0.5, 0, 1, 2, 4)
ds3 <- disc(ndvi_40$Tempchange, 4, method = "manual", ManualItv = manualitv1)
Geographical detectors: factor detector.
Description
Function for calculating power determinant using factor detector of geographical detectors and visualization.
Usage
gd(formula, data = NULL)
## S3 method for class 'gd'
print(x, ...)
## S3 method for class 'gd'
plot(x, sig = TRUE, ...)
Arguments
formula |
A formula of response and explanatory variables |
data |
A data.frame includes response and explanatory variables |
x |
A list of factor detector results |
sig |
If TRUE, only spatial associations that are significant at the 0.05 level will be plotted; If FALSE, all spatial associations will be plotted. |
... |
Ignore |
Examples
g1 <- gd(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
g1
plot(g1)
Geographical detectors: ecological detector.
Description
Function for ecological detector calculation, ecological matrix and visulization.
Usage
gdeco(formula, data = NULL)
## S3 method for class 'gdeco'
print(x, ...)
## S3 method for class 'gdeco'
plot(x, ...)
Arguments
formula |
A formula of response and explanatory variables |
data |
A data.frame includes response and explanatory variables |
x |
A list of ecological detector results |
... |
Ignore |
Examples
ge1 <- gdeco(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
ge1
data <- ndvi_40[,1:3]
ge2 <- gdeco(NDVIchange ~ ., data = data)
ge2
Geographical detectors: interaction detector.
Description
Function for interaction detector calculation and visualization. The types of interactions include "Enhance, nonlinear", "Independent", "Enhance, bi-", "Weaken, uni-" and "Weaken, nonlinear".
Usage
gdinteract(formula, data = NULL)
## S3 method for class 'gdinteract'
print(x, ...)
## S3 method for class 'gdinteract'
plot(x, ...)
Arguments
formula |
A formula of response and explanatory variables |
data |
A data.frame includes response and explanatory variables |
x |
A list of interaction detector results |
... |
Ignore |
Examples
gi1 <- gdinteract(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
gi1
data <- ndvi_40[,1:3]
gi2 <- gdinteract(NDVIchange ~ ., data = data)
gi2
Geographical detectors: a one-step function.
Description
A one-step function for optimal discretization and geographical detectors for multiple variables and visualization.
Usage
gdm(formula, continuous_variable = NULL, data = NULL, discmethod, discitv)
## S3 method for class 'gdm'
print(x, ...)
## S3 method for class 'gdm'
plot(x, ...)
Arguments
formula |
A formula of response and explanatory variables |
continuous_variable |
A vector of continuous variable names |
data |
A data.frame includes response and explanatory variables |
discmethod |
A character vector of discretization methods |
discitv |
A numeric vector of numbers of intervals |
x |
A list of |
... |
Ignore |
Examples
###############
## NDVI: ndvi_40
###############
## set optional parameters of optimal discretization
## optional methods: equal, natural, quantile, geometric, sd and manual
discmethod <- c("equal","quantile")
discitv <- c(4:5)
## "gdm" function
ndvigdm <- gdm(NDVIchange ~ Climatezone + Mining + Tempchange,
continuous_variable = c("Tempchange"),
data = ndvi_40,
discmethod = discmethod, discitv = discitv)
ndvigdm
plot(ndvigdm)
## Not run:
#############
## H1N1: h1n1_100
#############
## set optional parameters of optimal discretization
discmethod <- c("equal","natural","quantile")
discitv <- c(4:6)
continuous_variable <- colnames(h1n1_100)[-c(1,11)]
## "gdm" function
h1n1gdm <- gdm(H1N1 ~ .,
continuous_variable = continuous_variable,
data = h1n1_100,
discmethod = discmethod, discitv = discitv)
h1n1gdm
plot(h1n1gdm)
## End(Not run)
Geographical detectors: risk detector.
Description
Function for risk detector calculation, risk matrix and visualization.
Usage
gdrisk(formula, data = NULL)
## S3 method for class 'gdrisk'
print(x, ...)
## S3 method for class 'gdrisk'
plot(x, ...)
Arguments
formula |
A formula of response and explanatory variables |
data |
A data.frame includes response and explanatory variables |
x |
A list of risk detector results |
... |
Ignore |
Examples
gr1 <- gdrisk(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
gr1
plot(gr1)
data <- ndvi_40[,1:3]
gr2 <- gdrisk(NDVIchange ~ ., data = data)
gr2
Optimal discretization for continuous variables and visualization.
Description
Optimal discretization for continuous variables and visualization.
Usage
optidisc(formula, data,
discmethod = discmethod, discitv = discitv)
## S3 method for class 'optidisc'
print(x, ...)
## S3 method for class 'optidisc'
plot(x, ...)
Arguments
formula |
A formula of response and explanatory variables, where the explanatory variables must be continuous variables to be discretized. |
data |
A data.frame includes response and explanatory variables |
discmethod |
A character vector of discretization methods |
discitv |
A numeric vector of numbers of intervals |
x |
A list of |
... |
Ignore |
Examples
## set optional discretization methods and numbers of intervals
# optional methods: equal, natural, quantile, geometric, sd and manual
discmethod <- c("equal","quantile")
discitv <- c(4:5)
## optimal discretization
odc1 <- optidisc(NDVIchange ~ Tempchange, ndvi_40, discmethod, discitv)
odc1
plot(odc1)
Geographical detectors: risk means in risk detector.
Description
Function for calculating risk means within intervals and visualization.
Usage
riskmean(formula, data = NULL)
## S3 method for class 'riskmean'
print(x, ...)
## S3 method for class 'riskmean'
plot(x, ...)
Arguments
formula |
a formula of response and explanatory variables |
data |
a data.frame includes response and explanatory variables |
x |
a list of risk mean values |
... |
ignore |
Examples
rm1 <- riskmean(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
rm1
plot(rm1)
data <- ndvi_40[,1:3]
rm2 <- riskmean(NDVIchange ~ ., data = data)
rm2
Comparison of size effects of spatial units.
Description
Function for comparison of size effects of spatial units in spatial heterogeneity analysis.
Usage
sesu(gdlist, su)
Arguments
gdlist |
A list of |
su |
A vector of sizes of spatial units |
Examples
ndvilist <- list(ndvi_30, ndvi_40, ndvi_50)
su <- c(30, 40, 50) ## sizes of spatial units
## "gdm" function
gdlist <- lapply(ndvilist, function(x){
gdm(NDVIchange ~ Climatezone + Mining, data = x)
})
sesu(gdlist, su) ## size effects of spatial units
Converts a vector to a lower triangular matrix.
Description
The function v2m
is used in the functions
gdrisk
, gdinteract
and gdeco
for converting
a vector is from the results of the risk detector result,
interaction detector result or ecological detector to a lower
triangular matrix.
Usage
v2m(vec, diag = FALSE)
Arguments
vec |
A data.frame of risk/interaction/ecological detector result of a strata variable |
diag |
TRUE/FALSE, indicating if the output matrix is a diagonal matrix. |