Type: | Package |
Title: | 'ForLion' Algorithm to Find D-Optimal Designs for Experiments |
Version: | 0.3.0 |
Maintainer: | Siting Lin <slin95@uic.edu> |
Description: | Designing experimental plans that involve both discrete and continuous factors with general parametric statistical models using the 'ForLion' algorithm and 'EW ForLion' algorithm. The algorithms will search for locally optimal designs and EW optimal designs under the D-criterion. Reference: Huang, Y., Li, K., Mandal, A., & Yang, J., (2024)<doi:10.1007/s11222-024-10465-x>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
Imports: | psych, stats, cubature |
RoxygenNote: | 7.3.2 |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2025-06-27 20:32:31 UTC; sitin |
Author: | Yifei Huang [aut], Siting Lin [aut, cre], Jie Yang [aut] |
Repository: | CRAN |
Date/Publication: | 2025-06-27 20:50:02 UTC |
ForLion: 'ForLion' Algorithm to Find D-Optimal Designs for Experiments
Description
Designing experimental plans that involve both discrete and continuous factors with general parametric statistical models using the 'ForLion' algorithm and 'EW ForLion' algorithm. The algorithms will search for locally optimal designs and EW optimal designs under the D-criterion. Reference: Huang, Y., Li, K., Mandal, A., & Yang, J., (2024)doi:10.1007/s11222-024-10465-x.
Author(s)
Maintainer: Siting Lin slin95@uic.edu
Authors:
Yifei Huang
Jie Yang
function to generate the expected fisher information at one design point xi for multinomial logit models
Description
function to generate the expected fisher information at one design point xi for multinomial logit models
Usage
EW_Fi_MLM_func(X_x, bvec_matrix, link = "continuation")
Arguments
X_x |
model matrix for a specific design point x_i, X_x=h.func(xi) |
bvec_matrix |
the matrix of the sampled parameter values of beta |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
Value
F_x The expected Fisher information matrix at x_i
EU_x E(U) matrix for calculation the expected of Fisher information matrix at x_i
Examples
link.temp = "continuation"
xi.temp=c(80)
hfunc.temp = function(y){
matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE)
}
X_xtemp=hfunc.temp(xi.temp)
bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162,
-0.0535, -0.0274, -0.0096,-0.0291, -0.04,
0.0004, 0.0003, 0.0002, 0.0003, 0.1,
-9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE)
EW_Fi_MLM_func(X_x=X_xtemp, bvec_matrix=bvec_bootstrap, link=link.temp)
EW ForLion for generalized linear models
Description
EW ForLion algorithm to find EW D-optimal design for GLM models with mixed factors. Reference Section 3 of Lin, Huang, Yang (2025). Factors may include discrete factors with finite number of distinct levels and continuous factors with specified interval range (min, max), continuous factors, if any, must serve as main-effects only, allowing merging points that are close enough.Continuous factors first then discrete factors, model parameters should in the same order of factors.
Usage
EW_ForLion_GLM_Optimal(
n.factor,
factor.level,
var_names = NULL,
hfunc,
Integral_based,
b_matrix,
joint_Func_b,
Lowerbounds,
Upperbounds,
xlist_fix = NULL,
link,
reltol = 1e-05,
delta = 0,
maxit = 100,
random = FALSE,
nram = 3,
logscale = FALSE,
rowmax = NULL,
Xini = NULL
)
Arguments
n.factor |
vector of numbers of distinct levels, “0” indicating continuous factors that always come first, “2” or more for discrete factors, and “1” not allowed. |
factor.level |
list of distinct factor levels, “(min, max)” for continuous factors that always come first, finite sets for discrete factors. |
var_names |
Names for the design factors. Must have the same length asfactor.level. Defaults to "X1", "X2", ... |
hfunc |
function for generating the corresponding model matrix or predictor vector, given an experimental setting or design point. |
Integral_based |
TRUE or FALSE, whether or not integral-based EW D-optimality is used, FALSE indicates sample-based EW D-optimality is used. |
b_matrix |
matrix of bootstrapped or simulated parameter values. |
joint_Func_b |
prior distribution function of model parameters |
Lowerbounds |
vector of lower ends of ranges of prior distribution for model parameters. |
Upperbounds |
vector of upper ends of ranges of prior distribution for model parameters. |
xlist_fix |
list of discrete factor experimental settings under consideration, default NULL indicating a list of all possible discrete factor experimental settings will be used. |
link |
link function, default "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", "identity" |
reltol |
the relative convergence tolerance, default value 1e-5 |
delta |
relative difference as merging threshold for the merging step, the distance of two points less than delta may be merged, default 0, can be different from delta0 for the initial design. |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
logscale |
TRUE or FALSE, whether or not to run the lift-one step in log-scale, i.e., using EW_liftoneDoptimal_log_GLM_func() or EW_liftoneDoptimal_GLM_func() |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL indicating automatically generating an initial list of design points. |
Value
m number of design points
x.factor matrix with rows indicating design point
p EW D-optimal approximate allocation
det Optimal determinant of the expected Fisher information matrix
x.model model matrix X
E_w vector of E_w such that E_w=diag(p*E_w)
convergence TRUE or FALSE
min.diff the minimum Euclidean distance between design points
x.close a pair of design points with minimum distance
Examples
#Example Crystallography Experiment
hfunc.temp = function(y) {c(y,1)} # y -> h(y)=(y1,1)
n.factor.temp = c(0) # 1 continuous factors
factor.level.temp = list(c(-1,1))
link.temp="logit"
paras_lowerbound<-c(4,-3)
paras_upperbound<-c(10,3)
gjoint_b<- function(x) {
Func_b<-1/(prod(paras_upperbound-paras_lowerbound))
##the prior distributions are follow uniform distribution
return(Func_b)
}
EW_ForLion_GLM_Optimal(n.factor=n.factor.temp, factor.level=factor.level.temp,
hfunc=hfunc.temp,Integral_based=TRUE,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound,
Upperbounds=paras_upperbound, link=link.temp, reltol=1e-4, delta=0.01,
maxit=500, random=FALSE, nram=3, logscale=FALSE,Xini=NULL)
EW ForLion function for multinomial logit models
Description
Function for EW ForLion algorithm to find EW D-optimal design under multinomial logit models with mixed factors. Reference Section 3 of Lin, Huang, Yang (2025). Factors may include discrete factors with finite number of distinct levels and continuous factors with specified interval range (min, max), continuous factors, if any, must serve as main-effects only, allowing merging points that are close enough. Continuous factors first then discrete factors, model parameters should in the same order of factors.
Usage
EW_ForLion_MLM_Optimal(
J,
n.factor,
factor.level,
var_names = NULL,
xlist_fix = NULL,
hfunc,
h.prime,
bvec_matrix,
link = "continuation",
EW_Fi.func = EW_Fi_MLM_func,
delta0 = 1e-05,
epsilon = 1e-12,
reltol = 1e-05,
delta = 0,
maxit = 100,
random = FALSE,
nram = 3,
rowmax = NULL,
Xini = NULL,
random.initial = FALSE,
nram.initial = 3,
optim_grad = FALSE
)
Arguments
J |
number of response levels in the multinomial logit model |
n.factor |
Vector of numbers of distinct levels, “0” indicating continuous factors that always come first, “2” or more for discrete factors, and “1” not allowed. |
factor.level |
list of distinct factor levels, “(min, max)” for continuous factors that always come first, finite sets for discrete factors. |
var_names |
Names for the design factors. Must have the same length asfactor.level. Defaults to "X1", "X2", ... |
xlist_fix |
list of discrete factor experimental settings under consideration, default NULL indicating a list of all possible discrete factor experimental settings will be used. |
hfunc |
function for generating the corresponding model matrix or predictor vector, given an experimental setting or design point. |
h.prime |
function to obtain dX/dx |
bvec_matrix |
Matrix of bootstrapped or simulated parameter values. |
link |
link function, default "continuation", other choices "baseline", "cumulative", and "adjacent" |
EW_Fi.func |
function to calculate entry wise expectation of Fisher information Fi, default EW_Fi_MLM_func. |
delta0 |
merging threshold for initial design, such that, || x_i(0) - x_j(0) || >= delta0, default 1e-5 |
epsilon |
tuning parameter as converging threshold, such that, a nonnegative number is regarded as numerical zero if less than epsilon, default 1e-12. |
reltol |
the relative convergence tolerance, default value 1e-5 |
delta |
relative difference as merging threshold for the merging step, the distance of two points less than delta may be merged, default 0, can be different from delta0 for the initial design. |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, whether or not to repeat the lift-one step multiple times with random initial allocations, default FALSE. |
nram |
number of times repeating the lift-one step with random initial allocations, valid only if random is TRUE, default 3. |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL indicating automatically generating an initial list of design points. |
random.initial |
TRUE or FALSE, whether or not to repeat the whole procedure multiple times with random initial designs, default FALSE. |
nram.initial |
number of times repeating the whole procedure with random initial designs, valid only if random.initial is TRUE, default 3. |
optim_grad |
TRUE or FALSE, default is FALSE, whether to use the analytical gradient function or numerical gradient when searching for a new design point. |
Value
m the number of design points
x.factor matrix of experimental factors with rows indicating design point
p the reported EW D-optimal approximate allocation
det the determinant of the maximum Expectation of Fisher information
convergence TRUE or FALSE, whether converge
min.diff the minimum Euclidean distance between design points
x.close pair of design points with minimum distance
itmax iteration of the algorithm
Examples
J=3
p=5
hfunc.temp = function(y){
matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE)
} #hfunc is a 3*5 matrix, transfer x design matrix to model matrix for emergence of flies example
hprime.temp = function(y){
list(matrix_1 =matrix(data=c(0, 1, 2*y, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
nrow=3, ncol=5, byrow=TRUE))
}
link.temp = "continuation"
n.factor.temp = c(0) # 1 continuous factor no discrete factor in EW ForLion
factor.level.temp = list(c(80,200)) #boundary for continuous parameter in EW Forlion
bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162,
-0.0535, -0.0274, -0.0096,-0.0291, -0.04,
0.0004, 0.0003, 0.0002, 0.0003, 0.1,
-9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE)
EW_ForLion_MLM_Optimal(J=J, n.factor=n.factor.temp, factor.level=factor.level.temp,
xlist_fix=NULL, hfunc=hfunc.temp,h.prime=h.prime.temp, bvec_matrix=bvec_bootstrap,
delta=1, link=link.temp, optim_grad=FALSE)
function for calculating X=h(x) and E_w=E(nu(beta^T h(x))) given a design point x=(1,x1,...,xd)^T
Description
function for calculating X=h(x) and E_w=E(nu(beta^T h(x))) given a design point x=(1,x1,...,xd)^T
Usage
EW_Xw_maineffects_self(
x,
Integral_based,
joint_Func_b,
Lowerbounds,
Upperbounds,
b_matrix,
link = "logit",
h.func = NULL
)
Arguments
x |
x=(x1,...,xd) – design point/experimental setting |
Integral_based |
TRUE or FALSE, if TRUE then we will find the integral-based EW D-optimality otherwise we will find the sample-based EW D-optimality |
joint_Func_b |
prior distribution function of model parameters |
Lowerbounds |
vector of lower ends of ranges of prior distribution for model parameters. |
Upperbounds |
vector of upper ends of ranges of prior distribution for model parameters. |
b_matrix |
matrix of bootstrapped or simulated parameter values. |
link |
link = "logit" – link function, default: "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log" |
h.func |
function h(x)=(h1(x),...,hp(x)), default (1,x1,...,xd) |
Value
X=h(x)=(h1(x),...,hp(x)) – a row for design matrix
E_w – E(nu(b^t h(x)))
link – link function applied
Examples
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1)
link.temp="logit"
paras_lowerbound<-rep(-Inf, 4)
paras_upperbound<-rep(Inf, 4)
gjoint_b<- function(x) {
mu1 <- -0.5; sigma1 <- 1
mu2 <- 0.5; sigma2 <- 1
mu3 <- 1; sigma3 <- 1
mu0 <- 1; sigma0 <- 1
d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1)
d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2)
d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3)
d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0)
return(d1 * d2 * d3 * d4)
}
x.temp = c(2,1,3)
EW_Xw_maineffects_self(x=x.temp,Integral_based=TRUE,joint_Func_b=gjoint_b,
Lowerbounds=paras_lowerbound,Upperbounds=paras_upperbound, link=link.temp,
h.func=hfunc.temp)
function to generate a initial EW Design for generalized linear models
Description
function to generate a initial EW Design for generalized linear models
Usage
EW_design_initial_GLM(
k.continuous,
factor.level,
Integral_based,
b_matrix,
joint_Func_b,
Lowerbounds,
Upperbounds,
xlist_fix = NULL,
lvec,
uvec,
h.func,
link = "continuation",
delta0 = 1e-06,
epsilon = 1e-12,
maxit = 1000
)
Arguments
k.continuous |
number of continuous variables |
factor.level |
list of distinct factor levels, “(min, max)” for continuous factors that always come first, finite sets for discrete factors. |
Integral_based |
TRUE or FALSE, whether or not integral-based EW D-optimality is used, FALSE indicates sample-based EW D-optimality is used. |
b_matrix |
matrix of bootstrapped or simulated parameter values. |
joint_Func_b |
prior distribution function of model parameters |
Lowerbounds |
vector of lower ends of ranges of prior distribution for model parameters. |
Upperbounds |
vector of upper ends of ranges of prior distribution for model parameters. |
xlist_fix |
list of discrete factor experimental settings under consideration, default NULL indicating a list of all possible discrete factor experimental settings will be used. |
lvec |
lower limit of continuous variables |
uvec |
upper limit of continuous variables |
h.func |
function, is used to transfer the design point to model matrix (e.g. add interaction term, add intercept) |
link |
link function, default "continuation", other options "baseline", "adjacent" and "cumulative" |
delta0 |
tuning parameter, the distance threshold, || x_i(0) - x_j(0) || >= delta0 |
epsilon |
determining f.det > 0 numerically, f.det <= epsilon will be considered as f.det <= 0 |
maxit |
maximum number of iterations |
Value
X matrix of initial design point
p0 initial random approximate allocation
f.det the determinant of the expected Fisher information matrix for the initial design
function to generate a initial EW Design for multinomial logistic models
Description
function to generate a initial EW Design for multinomial logistic models
Usage
EW_design_initial_MLM(
k.continuous,
factor.level,
xlist_fix = NULL,
lvec,
uvec,
bvec_matrix,
h.func,
link = "continuation",
EW_Fi.func = EW_Fi_MLM_func,
delta0 = 1e-06,
epsilon = 1e-12,
maxit = 1000
)
Arguments
k.continuous |
number of continuous variables |
factor.level |
list of distinct factor levels, “(min, max)” for continuous factors that always come first, finite sets for discrete factors. |
xlist_fix |
list of discrete factor experimental settings under consideration, default NULL indicating a list of all possible discrete factor experimental settings will be used. |
lvec |
lower limit of continuous variables |
uvec |
upper limit of continuous variables |
bvec_matrix |
the matrix of the sampled parameter values of beta |
h.func |
function, is used to transfer the design point to model matrix (e.g. add interaction term, add intercept) |
link |
link function, default "continuation", other options "baseline", "adjacent" and "cumulative" |
EW_Fi.func |
function, is used to calculate the Expectation of Fisher information for a design point - default to be EW_Fi_MLM_func() in the package |
delta0 |
tuning parameter, the distance threshold, || x_i(0) - x_j(0) || >= delta0 |
epsilon |
determining f.det > 0 numerically, f.det <= epsilon will be considered as f.det <= 0 |
maxit |
maximum number of iterations |
Value
X matrix of initial design point
p0 initial random approximate allocation
f.det the determinant of the expected Fisher information matrix for the initial design.
Examples
k.continuous.temp=1
link.temp = "continuation"
n.factor.temp = c(0)
factor.level.temp = list(c(80,200))
hfunc.temp = function(y){
matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE)
}
lvec.temp = 80
uvec.temp = 200
bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162,
-0.0535, -0.0274, -0.0096,-0.0291, -0.04,
0.0004, 0.0003, 0.0002, 0.0003, 0.1,
-9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE)
EW_design_initial_MLM(k.continuous=k.continuous.temp, factor.level=n.factor.temp,xlist_fix=NULL,
lvec=lvec.temp,uvec=uvec.temp, bvec_matrix=bvec_bootstrap, h.func=hfunc.temp, link=link.temp)
function to calculate dEu/dx in the gradient of d(x, Xi), will be used in EW_ForLion_MLM_func() function
Description
function to calculate dEu/dx in the gradient of d(x, Xi), will be used in EW_ForLion_MLM_func() function
Usage
EW_dprime_func_self(
xi,
bvec_matrix,
h.func,
h.prime,
inv.F.mat,
EUx,
link = "continuation",
k.continuous
)
Arguments
xi |
a vector of design point |
bvec_matrix |
the matrix of the bootstrap parameter values of beta |
h.func |
function, is used to transfer xi to model matrix (e.g. add interaction term, add intercept) |
h.prime |
function, is used to find dX/dx |
inv.F.mat |
inverse of F_Xi matrix, inverse of the Expectation of fisher information of current design w/o new point |
EUx |
EU_x matrix in the algorithm, get from EW_Fi_MLM_func() function |
link |
link multinomial link function, default is"continuation", other choices "baseline", "cumulative", and "adjacent" |
k.continuous |
number of continuous factors |
Value
dEU/dx in the gradient of sensitivity function d(x, Xi)
EW Lift-one algorithm for D-optimal approximate design
Description
EW Lift-one algorithm for D-optimal approximate design
Usage
EW_liftoneDoptimal_GLM_func(
X,
E_w,
reltol = 1e-05,
maxit = 100,
random = FALSE,
nram = 3,
p00 = NULL
)
Arguments
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
E_w |
Diagonal of E_W matrix in Fisher information matrix, can be calculated EW_Xw_maineffects_self() function in the ForLion package |
reltol |
reltol The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
Value
p EW D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported EW D-optimal approximate allocation
Maximum The maximum of the determinant of the expected Fisher information matrix of the reported EW D-optimal design
convergence Convergence TRUE or FALSE
itmax number of the iteration
Examples
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1)
link.temp="logit"
paras_lowerbound<-rep(-Inf, 4)
paras_upperbound<-rep(Inf, 4)
gjoint_b<- function(x) {
mu1 <- -0.5; sigma1 <- 1
mu2 <- 0.5; sigma2 <- 1
mu3 <- 1; sigma3 <- 1
mu0 <- 1; sigma0 <- 1
d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1)
d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2)
d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3)
d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0)
return(d1 * d2 * d3 * d4)
}
x.temp=matrix(data=c(-2,-1,-3,2,-1,-3,-2,1,-3,2,1,-3,-2,-1,3,2,-1,3,-2,1,3,2,1,3),ncol=3,byrow=TRUE)
m.temp=dim(x.temp)[1] # number of design points
p.temp=length(paras_upperbound) # number of predictors
Xmat.temp=matrix(0, m.temp, p.temp)
EW_wvec.temp=rep(0, m.temp)
for(i in 1:m.temp) {
htemp=EW_Xw_maineffects_self(x=x.temp[i,],Integral_based=TRUE,joint_Func_b=gjoint_b,
Lowerbounds=paras_lowerbound,Upperbounds=paras_upperbound, link=link.temp,
h.func=hfunc.temp);
Xmat.temp[i,]=htemp$X;
EW_wvec.temp[i]=htemp$E_w;
}
EW_liftoneDoptimal_GLM_func(X=Xmat.temp, E_w=EW_wvec.temp, reltol=1e-8, maxit=1000,
random=TRUE, nram=3, p00=NULL)
function of EW liftone for multinomial logit model
Description
function of EW liftone for multinomial logit model
Usage
EW_liftoneDoptimal_MLM_func(
m,
p,
Xi,
J,
thetavec_matrix,
link = "continuation",
reltol = 1e-05,
maxit = 500,
p00 = NULL,
random = FALSE,
nram = 3
)
Arguments
m |
number of design points |
p |
number of parameters in the multinomial logit model |
Xi |
model matrix |
J |
number of response levels in the multinomial logit model |
thetavec_matrix |
the matrix of the sampled parameter values of beta |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
reltol |
relative tolerance for convergence, default to 1e-5 |
maxit |
the number of maximum iteration, default to 500 |
p00 |
specified initial approximate allocation, default to NULL, if NULL, will generate a random initial approximate allocation |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
Value
p reported EW D-optimal approximate allocation
p0 the initial approximate allocation that derived the reported EW D-optimal design
Maximum the maximum of the determinant of the expected Fisher information matrix
Convergence TRUE or FALSE, whether the algorithm converges
itmax maximum iterations
Examples
m=7
p=5
J=3
link.temp = "continuation"
factor_x=c(80,100,120,140,160,180,200)
hfunc.temp = function(y){
matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE)
}
Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m)
for(i in 1:m) {
Xi[,,i]=hfunc.temp(factor_x[i])
}
bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162,
-0.0535, -0.0274, -0.0096,-0.0291, -0.04,
0.0004, 0.0003, 0.0002, 0.0003, 0.1,
-9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE)
EW_liftoneDoptimal_MLM_func(m=m, p=p, Xi=Xi, J=J, thetavec_matrix=bvec_bootstrap,
link = "continuation",reltol=1e-5, maxit=500, p00=rep(1/7,7), random=FALSE, nram=3)
EW Lift-one algorithm for D-optimal approximate design in log scale
Description
EW Lift-one algorithm for D-optimal approximate design in log scale
Usage
EW_liftoneDoptimal_log_GLM_func(
X,
E_w,
reltol = 1e-05,
maxit = 100,
random = FALSE,
nram = 3,
p00 = NULL
)
Arguments
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
E_w |
Diagonal of E_W matrix in Fisher information matrix, can be calculated EW_Xw_maineffects_self() function in the ForLion package |
reltol |
reltol The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
Value
p EW D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported EW D-optimal approximate allocation
Maximum The maximum of the determinant of the Fisher information matrix of the reported EW D-optimal design
convergence Convergence TRUE or FALSE
itmax number of the iteration
Examples
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1)
link.temp="logit"
paras_lowerbound<-rep(-Inf, 4)
paras_upperbound<-rep(Inf, 4)
gjoint_b<- function(x) {
mu1 <- -0.5; sigma1 <- 1
mu2 <- 0.5; sigma2 <- 1
mu3 <- 1; sigma3 <- 1
mu0 <- 1; sigma0 <- 1
d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1)
d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2)
d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3)
d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0)
return(d1 * d2 * d3 * d4)
}
x.temp=matrix(data=c(-2,-1,-3,2,-1,-3,-2,1,-3,2,1,-3,-2,-1,3,2,-1,3,-2,1,3,2,1,3),
ncol=3,byrow=TRUE)
m.temp=dim(x.temp)[1] # number of design points
p.temp=length(paras_upperbound) # number of predictors
Xmat.temp=matrix(0, m.temp, p.temp)
EW_wvec.temp=rep(0, m.temp)
for(i in 1:m.temp) {
htemp=EW_Xw_maineffects_self(x=x.temp[i,],Integral_based=TRUE,joint_Func_b=gjoint_b,
Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound, link=link.temp,
h.func=hfunc.temp);
Xmat.temp[i,]=htemp$X;
EW_wvec.temp[i]=htemp$E_w;
}
EW_liftoneDoptimal_GLM_func(X=Xmat.temp, E_w=EW_wvec.temp, reltol=1e-8, maxit=1000, random=TRUE,
nram=3, p00=NULL)
function to generate fisher information at one design point xi for multinomial logit models
Description
function to generate fisher information at one design point xi for multinomial logit models
Usage
Fi_MLM_func(X_x, bvec, link = "continuation")
Arguments
X_x |
model matrix for a specific design point x_i, X_x=h.func(xi) |
bvec |
beta coefficients in the model |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
Value
F_x Fisher information matrix at x_i
U_x U matrix for calculation of Fisher information matrix at x_i (see Corollary 3.1 in Bu, Majumdar, Yang(2020))
Examples
# Reference minimizing surface example in supplementary material
# Section S.3 in Huang, Li, Mandal, Yang (2024)
xi.temp = c(-1, -25, 199.96, -150, -100, 16)
hfunc.temp = function(y){
if(length(y) != 6){stop("Input should have length 6");}
model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE)
model.mat[5,]=0
model.mat[1:4,1:4] = diag(4)
model.mat[1:4, 5] =((-1)*y[6])
model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE)
return(model.mat)
}
X_x.temp = hfunc.temp(xi.temp)
bvec.temp = c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464,
0.18504420, -0.01638597, -0.03543202, -0.07060306, 0.10347917)
link.temp = "cumulative"
Fi_MLM_func(X_x=X_x.temp, bvec=bvec.temp, link=link.temp)
ForLion for generalized linear models
Description
ForLion algorithm to find D-optimal design for GLM models with mixed factors, reference: Section 4 in Huang, Li, Mandal, Yang (2024). Factors may include discrete factors with finite number of distinct levels and continuous factors with specified interval range (min, max), continuous factors, if any, must serve as main-effects only, allowing merging points that are close enough. Continuous factors first then discrete factors, model parameters should in the same order of factors.
Usage
ForLion_GLM_Optimal(
n.factor,
factor.level,
var_names = NULL,
xlist_fix = NULL,
hfunc,
bvec,
link,
reltol = 1e-05,
delta = 0,
maxit = 100,
random = FALSE,
nram = 3,
logscale = FALSE,
rowmax = NULL,
Xini = NULL
)
Arguments
n.factor |
vector of numbers of distinct levels, “0” indicating continuous factors that always come first, “2” or more for discrete factors, and “1” not allowed. |
factor.level |
list of distinct factor levels, “(min, max)” for continuous factors that always come first, finite sets for discrete factors. |
var_names |
Names for the design factors. Must have the same length asfactor.level. Defaults to "X1", "X2", ... |
xlist_fix |
list of discrete factor experimental settings under consideration, default NULL indicating a list of all possible discrete factor experimental settings will be used. |
hfunc |
function for generating the corresponding model matrix or predictor vector, given an experimental setting or design point. |
bvec |
assumed parameter values of model parameters beta, same length of h(y) |
link |
link function, default "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", "identity" |
reltol |
the relative convergence tolerance, default value 1e-5 |
delta |
relative difference as merging threshold for the merging step, the distance of two points less than delta may be merged, default 0, can be different from delta0 for the initial design. |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
logscale |
TRUE or FALSE, whether or not to run the lift-one step in log-scale, i.e., using liftoneDoptimal_log_GLM_func() or liftoneDoptimal_GLM_func(). |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL indicating automatically generating an initial list of design points. |
Value
m number of design points
x.factor matrix with rows indicating design point
p D-optimal approximate allocation
det Optimal determinant of Fisher information matrix
convergence TRUE or FALSE
min.diff the minimum Euclidean distance between design points
x.close a pair of design points with minimum distance
itmax iteration of the algorithm
Examples
#Example 3 in Huang, Li, Mandal, Yang (2024), electrostatic discharge experiment
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1)
n.factor.temp = c(0, 2, 2, 2, 2) # 1 continuous factor with 4 discrete factors
factor.level.temp = list(c(25,45),c(-1,1),c(-1,1),c(-1,1),c(-1,1))
link.temp="logit"
b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090)
ForLion_GLM_Optimal(n.factor=n.factor.temp, factor.level=factor.level.temp, xlist_fix=NULL,
hfunc=hfunc.temp, bvec=b.temp, link=link.temp, reltol=1e-2, delta=0.03, maxit=500,
random=FALSE,nram=3, logscale=TRUE)
ForLion function for multinomial logit models
Description
Function for ForLion algorithm to find D-optimal design under multinomial logit models with mixed factors. Reference Section 3 of Huang, Li, Mandal, Yang (2024). Factors may include discrete factors with finite number of distinct levels and continuous factors with specified interval range (min, max), continuous factors, if any, must serve as main-effects only, allowing merging points that are close enough. Continuous factors first then discrete factors, model parameters should in the same order of factors.
Usage
ForLion_MLM_Optimal(
J,
n.factor,
factor.level,
var_names = NULL,
xlist_fix = NULL,
hfunc,
h.prime,
bvec,
link = "continuation",
Fi.func = Fi_MLM_func,
delta0 = 1e-05,
epsilon = 1e-12,
reltol = 1e-05,
delta = 0,
maxit = 100,
random = FALSE,
nram = 3,
rowmax = NULL,
Xini = NULL,
random.initial = FALSE,
nram.initial = 3,
optim_grad = FALSE
)
Arguments
J |
number of response levels in the multinomial logit model |
n.factor |
Vector of numbers of distinct levels, “0” indicating continuous factors that always come first, “2” or more for discrete factors, and “1” not allowed. |
factor.level |
list of distinct factor levels, “(min, max)” for continuous factors that always come first, finite sets for discrete factors. |
var_names |
Names for the design factors. Must have the same length asfactor.level. Defaults to "X1", "X2", ... |
xlist_fix |
list of discrete factor experimental settings under consideration, default NULL indicating a list of all possible discrete factor experimental settings will be used. |
hfunc |
function for generating the corresponding model matrix or predictor vector, given an experimental setting or design point. |
h.prime |
function to obtain dX/dx |
bvec |
assumed parameter values of model parameters beta, same length of h(y) |
link |
link function, default "continuation", other choices "baseline", "cumulative", and "adjacent" |
Fi.func |
function to calculate row-wise Fisher information Fi, default is Fi_MLM_func |
delta0 |
merging threshold for initial design, such that, || x_i(0) - x_j(0) || >= delta0, default 1e-5 |
epsilon |
tuning parameter as converging threshold, such that, a nonnegative number is regarded as numerical zero if less than epsilon, default 1e-12. |
reltol |
the relative convergence tolerance, default value 1e-5 |
delta |
relative difference as merging threshold for the merging step, the distance of two points less than delta may be merged, default 0, can be different from delta0 for the initial design. |
maxit |
the maximum number of iterations, default value 100 |
random |
TRUE or FALSE, whether or not to repeat the lift-one step multiple times with random initial allocations, default FALSE. |
nram |
number of times repeating the lift-one step with random initial allocations, valid only if random is TRUE, default 3. |
rowmax |
maximum number of points in the initial design, default NULL indicates no restriction |
Xini |
initial list of design points, default NULL indicating automatically generating an initial list of design points. |
random.initial |
TRUE or FALSE, whether or not to repeat the whole procedure multiple times with random initial designs, default FALSE. |
nram.initial |
number of times repeating the whole procedure with random initial designs, valid only if random.initial is TRUE, default 3. |
optim_grad |
TRUE or FALSE, default is FALSE, whether to use the analytical gradient function or numerical gradient when searching for a new design point. |
Value
m the number of design points
x.factor matrix of experimental factors with rows indicating design point
p the reported D-optimal approximate allocation
det the determinant of the maximum Fisher information
convergence TRUE or FALSE, whether converge
min.diff the minimum Euclidean distance between design points
x.close pair of design points with minimum distance
itmax iteration of the algorithm
Examples
m=5
p=10
J=5
link.temp = "cumulative"
n.factor.temp = c(0,0,0,0,0,2) # 1 discrete factor w/ 2 levels + 5 continuous
## Note: Always put continuous factors ahead of discrete factors,
## pay attention to the order of coefficients paring with predictors
factor.level.temp = list(c(-25,25), c(-200,200),c(-150,0),c(-100,0),c(0,16),c(-1,1))
hfunc.temp = function(y){
if(length(y) != 6){stop("Input should have length 6");}
model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE)
model.mat[5,]=0
model.mat[1:4,1:4] = diag(4)
model.mat[1:4, 5] =((-1)*y[6])
model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE)
return(model.mat)
}
bvec.temp=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420,
-0.01638597, -0.03543202, -0.07060306, 0.10347917)
h.prime.temp = NULL #use numerical gradient (optim_grad=FALSE)
ForLion_MLM_Optimal(J=J, n.factor=n.factor.temp, factor.level=factor.level.temp, xlist_fix=NULL,
hfunc=hfunc.temp,h.prime=h.prime.temp, bvec=bvec.temp, link=link.temp, optim_grad=FALSE)
rounding algorithm for generalized linear models
Description
rounding algorithm for generalized linear models
Usage
GLM_Exact_Design(
k.continuous,
design_x,
design_p,
var_names = NULL,
det.design,
p,
ForLion,
bvec,
Integral_based,
b_matrix,
joint_Func_b,
Lowerbounds,
Upperbounds,
delta2,
L,
N,
hfunc,
link
)
Arguments
k.continuous |
number of continuous factors |
design_x |
the matrix with rows indicating design point which we got from the approximate design |
design_p |
the corresponding approximate allocation |
var_names |
Names for the design factors. Must have the same length asfactor.level. Defaults to "X1", "X2", ... |
det.design |
the determinant of the approximate design |
p |
number of parameters |
ForLion |
TRUE or FALSE, TRUE: this approximate design was generated by ForLion algorithm, FALSE: this approximate was generated by EW ForLion algorithm |
bvec |
If ForLion==TRUE assumed parameter values of model parameters beta, same length of h(y) |
Integral_based |
TRUE or FALSE, whether or not integral-based EW D-optimality is used, FALSE indicates sample-based EW D-optimality is used. |
b_matrix |
matrix of bootstrapped or simulated parameter values. |
joint_Func_b |
prior distribution function of model parameters |
Lowerbounds |
vector of lower ends of ranges of prior distribution for model parameters. |
Upperbounds |
vector of upper ends of ranges of prior distribution for model parameters. |
delta2 |
points with distance less than that will be merged |
L |
vector: rounding factors |
N |
total number of observations |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
link |
link function, default "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", "identity" |
Value
x.design matrix with rows indicating design point
ni.design exact allocation
rel.efficiency relative efficiency of the Exact and Approximate Designs
Examples
k.continuous=1
design_x=matrix(c(25, -1, -1,-1, -1 ,
25, -1, -1, -1, 1,
25, -1, -1, 1, -1,
25, -1, -1, 1, 1,
25, -1, 1, -1, -1,
25, -1, 1, -1, 1,
25, -1, 1, 1, -1,
25, -1, 1, 1, 1,
25, 1, -1, 1, -1,
25, 1, 1, -1, -1,
25, 1, 1, -1, 1,
25, 1, 1, 1, -1,
25, 1, 1, 1, 1,
38.9479, -1, 1, 1, -1,
34.0229, -1, 1, -1, -1,
35.4049, -1, 1, -1, 1,
37.1960, -1, -1, 1, -1,
33.0884, -1, 1, 1, 1),nrow=18,ncol=5,byrow = TRUE)
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1)
link.temp="logit"
design_p=c(0.0848, 0.0875, 0.0410, 0.0856, 0.0690, 0.0515,
0.0901, 0.0845, 0.0743, 0.0356, 0.0621, 0.0443,
0.0090, 0.0794, 0.0157, 0.0380, 0.0455, 0.0022)
det.design=4.552715e-06
paras_lowerbound<-c(0.25,1,-0.3,-0.3,0.1,0.35,-8.0)
paras_upperbound<-c(0.45,2,-0.1,0.0,0.4,0.45,-7.0)
gjoint_b<- function(x) {
Func_b<-1/(prod(paras_upperbound-paras_lowerbound))
##the prior distributions are follow uniform distribution
return(Func_b)
}
GLM_Exact_Design(k.continuous=k.continuous,design_x=design_x,
design_p=design_p,det.design=det.design,p=7,ForLion=FALSE,Integral_based=TRUE,
joint_Func_b=gjoint_b,Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound,
delta2=0,L=1,N=100,hfunc=hfunc.temp,link=link.temp)
rounding algorithm for multinomial logit models
Description
rounding algorithm for multinomial logit models
Usage
MLM_Exact_Design(
J,
k.continuous,
design_x,
design_p,
var_names = NULL,
det.design,
p,
ForLion,
bvec,
bvec_matrix,
delta2,
L,
N,
hfunc,
link
)
Arguments
J |
number of response levels in the multinomial logit model |
k.continuous |
number of continuous factors |
design_x |
the matrix with rows indicating design point which we got from the approximate design |
design_p |
the corresponding approximate allocation |
var_names |
Names for the design factors. Must have the same length asfactor.level. Defaults to "X1", "X2", ... |
det.design |
the determinant of the approximate design |
p |
number of parameters |
ForLion |
TRUE or FALSE, TRUE: this approximate design was generated by ForLion algorithm, FALSE: this approximate was generated by EW ForLion algorithm |
bvec |
If ForLion==TRUE assumed parameter values of model parameters beta, same length of h(y) |
bvec_matrix |
If ForLion==FALSE the matrix of the sampled parameter values of beta |
delta2 |
points with distance less than that will be merged |
L |
vector: rounding factors |
N |
total number of observations |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
link |
link function, default "continuation", other choices "baseline", "cumulative", and "adjacent" |
Value
x.design matrix with rows indicating design point
ni.design exact allocation
rel.efficiency relative efficiency of the Exact and Approximate Designs
Examples
J=3
k.continuous=1
design_x<-c(0.0000,103.5451,149.2355)
design_p<-c(0.2027, 0.3981, 0.3992)
det.design=54016609
p=5
theta = c(-1.935, -0.02642, 0.0003174, -9.159, 0.06386)
hfunc.temp = function(y){
matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3,
ncol=5, byrow=TRUE)
}
link.temp = "continuation"
MLM_Exact_Design(J=J, k.continuous=k.continuous,design_x=design_x,
design_p=design_p,det.design=det.design,p=p,ForLion=TRUE,bvec=theta,
delta2=1,L=0.5,N=1000,hfunc=hfunc.temp,link=link.temp)
function for calculating X=h(x) and w=nu(beta^T h(x)) given a design point x = (x1,...,xd)^T
Description
function for calculating X=h(x) and w=nu(beta^T h(x)) given a design point x = (x1,...,xd)^T
Usage
Xw_maineffects_self(x, b, link = "logit", h.func = NULL)
Arguments
x |
x=(x1,...,xd) – design point/experimental setting |
b |
b=(b1,...,bp) – assumed parameter values |
link |
link = "logit" – link function, default: "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", and "identity" |
h.func |
function h(x)=(h1(x),...,hp(x)), default (1,x1,...,xd) |
Value
X=h(x)=(h1(x),...,hp(x)) – a row for design matrix
w – nu(b^t h(x))
link – link function applied
Examples
# y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1) in hfunc
hfunc.temp = function(y) {c(y,y[4]*y[5],1);};
link.temp="logit"
x.temp = c(25,1,1,1,1)
b.temp = c(-7.533386, 1.746778, -0.1937022, -0.09704664, 0.1077859, 0.2729715, 0.4293171)
Xw_maineffects_self(x.temp, b.temp, link=link.temp, h.func=hfunc.temp)
function to generate initial design with design points and the approximate allocation
Description
function to generate initial design with design points and the approximate allocation
Usage
design_initial_self(
k.continuous,
factor.level,
MLM,
xlist_fix = NULL,
lvec,
uvec,
bvec,
h.func,
link = "continuation",
Fi.func = Fi_MLM_func,
delta0 = 1e-06,
epsilon = 1e-12,
maxit = 1000
)
Arguments
k.continuous |
number of continuous variables |
factor.level |
list of distinct factor levels, “(min, max)” for continuous factors that always come first, finite sets for discrete factors. |
MLM |
TRUE or FALSE, TRUE: generate initial design for multinomial logistic model, FALSE: generate initial design for generalized linear model |
xlist_fix |
list of discrete factor experimental settings under consideration, default NULL indicating a list of all possible discrete factor experimental settings will be used. |
lvec |
lower limit of continuous variables |
uvec |
upper limit of continuous variables |
bvec |
assumed parameter values of beta |
h.func |
function for generating the corresponding model matrix or predictor vector, given an experimental setting or design point. |
link |
link function, default "continuation", other options "baseline", "adjacent" and "cumulative" |
Fi.func |
function, is used to calculate Fisher inforamtion for a design point, default to be Fi_MLM_func() in the package |
delta0 |
tuning parameter, the distance threshold, || x_i(0) - x_j(0) || >= delta0 |
epsilon |
tuning parameter as converging threshold, such that, a nonnegative number is regarded as numerical zero if less than epsilon, default 1e-12. |
maxit |
maximum number of iterations |
Value
X matrix of initial design point
p0 initial random approximate allocation
f.det the determinant of Fisher information matrix for the initial design
Examples
k.continuous.temp=5
link.temp = "cumulative"
n.factor.temp = c(0,0,0,0,0,2) # 1 discrete factor w/ 2 levels + 5 continuous
## Note: Always put continuous factors ahead of discrete factors,
## pay attention to the order of coefficients paring with predictors
lvec.temp = c(-25,-200,-150,-100,0,-1)
uvec.temp = c(25,200,0,0,16,1)
hfunc.temp = function(y){
if(length(y) != 6){stop("Input should have length 6");}
model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE)
model.mat[5,]=0
model.mat[1:4,1:4] = diag(4)
model.mat[1:4, 5] =((-1)*y[6])
model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE)
return(model.mat)
}
bvec.temp=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420,
-0.01638597, -0.03543202, -0.07060306, 0.10347917)
design_initial_self(k.continuous=k.continuous.temp, factor.level=n.factor.temp,
MLM=TRUE,xlist_fix=NULL, lvec=lvec.temp,uvec=uvec.temp, bvec=bvec.temp,
h.func=hfunc.temp,link=link.temp)
function to generate discrete uniform random variables for initial random design points in ForLion
Description
function to generate discrete uniform random variables for initial random design points in ForLion
Usage
discrete_rv_self(n, xlist)
Arguments
n |
number of discrete random variables |
xlist |
list of levels for variables to be generated |
Value
list of discrete uniform random variables
Examples
n=3 #three discrete random variables
xlist=list(c(-1,1),c(-1,1),c(-1,0,1)) #two binary and one three-levels
discrete_rv_self(n, xlist)
function to calculate du/dx in the gradient of d(x, Xi), will be used in ForLion_MLM_func() function, details see Appendix C in Huang, Li, Mandal, Yang (2024)
Description
function to calculate du/dx in the gradient of d(x, Xi), will be used in ForLion_MLM_func() function, details see Appendix C in Huang, Li, Mandal, Yang (2024)
Usage
dprime_func_self(
xi,
bvec,
h.func,
h.prime,
inv.F.mat,
Ux,
link = "continuation",
k.continuous
)
Arguments
xi |
a vector of design point |
bvec |
parameter of the multinomial logistic regression model |
h.func |
function, is used to transfer xi to model matrix (e.g. add interaction term, add intercept) |
h.prime |
function, is used to find dX/dx |
inv.F.mat |
inverse of F_Xi matrix, inverse of fisher information of current design w/o new point |
Ux |
U_x matrix in the algorithm, get from Fi_MLM_func() function |
link |
multinomial link function, default is"continuation", other choices "baseline", "cumulative", and "adjacent" |
k.continuous |
number of continuous factors |
Value
dU/dx in the gradient of sensitivity function d(x, Xi)
Lift-one algorithm for D-optimal approximate design
Description
Lift-one algorithm for D-optimal approximate design
Usage
liftoneDoptimal_GLM_func(
X,
w,
reltol = 1e-05,
maxit = 100,
random = FALSE,
nram = 3,
p00 = NULL
)
Arguments
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
w |
Diagonal of W matrix in Fisher information matrix, can be calculated Xw_maineffects_self() function in the ForLion package |
reltol |
The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
Value
p D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported D-optimal approximate allocation
Maximum The maximum of the determinant of the Fisher information matrix of the reported D-optimal design
convergence Convergence TRUE or FALSE
itmax number of the iteration
Examples
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1)
link.temp="logit"
x.temp = matrix(data=c(25.00000,1,-1,1,-1,25.00000,1,1,1,-1,32.06741,-1,1,-1,1,40.85698,
-1,1,1,-1,28.86602,-1,1,-1,-1,29.21486,-1,-1,1,1,25.00000,1,1,1,1, 25.00000,1,1,-1,-1),
ncol=5, byrow=TRUE)
b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090)
X.mat = matrix(,nrow=8, ncol=7)
w.vec = rep(NA,8)
for(i in 1:8) {
htemp=Xw_maineffects_self(x=x.temp[i,], b=b.temp, link=link.temp, h.func=hfunc.temp);
X.mat[i,]=htemp$X;
w.vec[i]=htemp$w;
};
liftoneDoptimal_GLM_func(X=X.mat, w=w.vec, reltol=1e-5, maxit=500, random=TRUE, nram=3, p00=NULL)
function of liftone for multinomial logit model
Description
function of liftone for multinomial logit model
Usage
liftoneDoptimal_MLM_func(
m,
p,
Xi,
J,
thetavec,
link = "continuation",
reltol = 1e-05,
maxit = 500,
p00 = NULL,
random = FALSE,
nram = 3
)
Arguments
m |
number of design points |
p |
number of parameters in the multinomial logit model |
Xi |
model matrix |
J |
number of response levels in the multinomial logit model |
thetavec |
model parameter |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
reltol |
relative tolerance for convergence, default to 1e-5 |
maxit |
the number of maximum iteration, default to 500 |
p00 |
specified initial approximate allocation, default to NULL, if NULL, will generate a random initial approximate allocation |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
Value
p reported D-optimal approximate allocation
p0 the initial approximate allocation that derived the reported D-optimal design
Maximum the maximum of the determinant of the Fisher information matrix
Convergence TRUE or FALSE, whether the algorithm converges
itmax maximum iterations
Examples
m=5
p=10
J=5
factor_x = matrix(c(-1,-25,199.96,-150,-100,16,1,23.14,196.35,0,-100,
16,1,-24.99,199.99,-150,0,16,-1,25,-200,0,0,16,-1,-25,-200,-150,0,16),ncol=6,byrow=TRUE)
Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m)
hfunc.temp = function(y){
if(length(y) != 6){stop("Input should have length 6");}
model.mat = matrix(NA, nrow=5, ncol=10, byrow=TRUE)
model.mat[5,]=0
model.mat[1:4,1:4] = diag(4)
model.mat[1:4, 5] =((-1)*y[6])
model.mat[1:4, 6:10] = matrix(((-1)*y[1:5]), nrow=4, ncol=5, byrow=TRUE)
return(model.mat)
}
for(i in 1:m) {
Xi[,,i]=hfunc.temp(factor_x[i,])
}
thetavec=c(-1.77994301, -0.05287782, 1.86852211, 2.76330779, -0.94437464, 0.18504420,
-0.01638597, -0.03543202, -0.07060306, 0.10347917)
liftoneDoptimal_MLM_func(m=m,p=p,Xi=Xi,J=J,thetavec=thetavec,
link="cumulative",p00=rep(1/5,5), random=FALSE)
Lift-one algorithm for D-optimal approximate design in log scale
Description
Lift-one algorithm for D-optimal approximate design in log scale
Usage
liftoneDoptimal_log_GLM_func(
X,
w,
reltol = 1e-05,
maxit = 100,
random = FALSE,
nram = 3,
p00 = NULL
)
Arguments
X |
Model matrix, with nrow = num of design points and ncol = num of parameters |
w |
Diagonal of W matrix in Fisher information matrix, can be calculated Xw_maineffects_self() function in the ForLion package |
reltol |
The relative convergence tolerance, default value 1e-5 |
maxit |
The maximum number of iterations, default value 100 |
random |
TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE |
nram |
when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3 |
p00 |
Specified initial design approximate allocation; default to be NULL, this will generate a random initial design |
Value
p D-optimal approximate allocation
p0 Initial approximate allocation that derived the reported D-optimal approximate allocation
Maximum The maximum of the determinant of the expected Fisher information matrix of the reported D-optimla design
convergence Convergence TRUE or FALSE
itmax number of the iteration
Examples
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1)
link.temp="logit"
x.temp = matrix(data=c(25.00000,1,-1,1,-1,25.00000,1,1,1,-1,32.06741,-1,1,-1,1,40.85698,
-1,1,1,-1,28.86602,-1,1,-1,-1,29.21486,-1,-1,1,1,25.00000,1,1,1,1, 25.00000,1,1,-1,-1),
ncol=5, byrow=TRUE)
b.temp = c(0.3197169, 1.9740922, -0.1191797, -0.2518067, 0.1970956, 0.3981632, -7.6648090)
X.mat = matrix(,nrow=8, ncol=7)
w.vec = rep(NA,8)
for(i in 1:8) {
htemp=Xw_maineffects_self(x=x.temp[i,], b=b.temp, link=link.temp, h.func=hfunc.temp);
X.mat[i,]=htemp$X;
w.vec[i]=htemp$w;
};
liftoneDoptimal_log_GLM_func(X=X.mat, w=w.vec, reltol=1e-5, maxit=500,
random=TRUE, nram=3, p00=NULL)
function to calculate first derivative of nu function given eta for cauchit link
Description
function to calculate first derivative of nu function given eta for cauchit link
Usage
nu1_cauchit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the first derivative of nu function given eta for cauchit link
Examples
eta = c(1,2,3,4)
nu1_cauchit_self(eta)
function to calculate first derivative of nu function given eta for identity link
Description
function to calculate first derivative of nu function given eta for identity link
Usage
nu1_identity_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the first derivative of nu function given eta for identity link
Examples
eta = c(1,2,3,4)
nu1_identity_self(eta)
function to calculate first derivative of nu function given eta for log link
Description
function to calculate first derivative of nu function given eta for log link
Usage
nu1_log_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the first derivative of nu function given eta for log link
Examples
eta = c(1,2,3,4)
nu1_log_self(eta)
function to calculate the first derivative of nu function given eta for logit link
Description
function to calculate the first derivative of nu function given eta for logit link
Usage
nu1_logit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the first derivative of nu function given eta for logit link
Examples
eta = c(1,2,3,4)
nu1_logit_self(eta)
function to calculate the first derivative of nu function given eta for log-log link
Description
function to calculate the first derivative of nu function given eta for log-log link
Usage
nu1_loglog_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the first derivative of nu function given eta for log-log link
Examples
eta = c(1,2,3,4)
nu1_loglog_self(eta)
function to calculate the first derivative of nu function given eta for probit link
Description
function to calculate the first derivative of nu function given eta for probit link
Usage
nu1_probit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the first derivative of nu function for probit link
Examples
eta = c(1,2,3,4)
nu1_probit_self(eta)
function to calculate the second derivative of nu function given eta for cauchit link
Description
function to calculate the second derivative of nu function given eta for cauchit link
Usage
nu2_cauchit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the second derivative of nu function for cauchit link
Examples
eta = c(1,2,3,4)
nu2_cauchit_self(eta)
function to calculate the second derivative of nu function given eta for identity link
Description
function to calculate the second derivative of nu function given eta for identity link
Usage
nu2_identity_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the second derivative of nu function for identity link
Examples
eta = c(1,2,3,4)
nu2_identity_self(eta)
function to calculate the second derivative of nu function given eta for log link
Description
function to calculate the second derivative of nu function given eta for log link
Usage
nu2_log_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the second derivative of nu function for log link
Examples
eta = c(1,2,3,4)
nu2_log_self(eta)
function to calculate the second derivative of nu function given eta for logit link
Description
function to calculate the second derivative of nu function given eta for logit link
Usage
nu2_logit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the second derivative of nu function for logit link
Examples
eta = c(1,2,3,4)
nu2_logit_self(eta)
function to calculate the second derivative of nu function given eta for loglog link
Description
function to calculate the second derivative of nu function given eta for loglog link
Usage
nu2_loglog_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the second derivative of nu function for loglog link
Examples
eta = c(1,2,3,4)
nu2_loglog_self(eta)
function to calculate the second derivative of nu function given eta for probit link
Description
function to calculate the second derivative of nu function given eta for probit link
Usage
nu2_probit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
the second derivative of nu function for probit link
Examples
eta = c(1,2,3,4)
nu2_probit_self(eta)
function to calculate w = nu(eta) given eta for cauchit link
Description
function to calculate w = nu(eta) given eta for cauchit link
Usage
nu_cauchit_self(x)
Arguments
x |
a list of eta = X*beta |
Value
diagonal element of W matrix which is nu(eta)
Examples
eta = c(1,2,3,4)
nu_cauchit_self(eta)
function to calculate w = nu(eta) given eta for identity link
Description
function to calculate w = nu(eta) given eta for identity link
Usage
nu_identity_self(x)
Arguments
x |
Numeric vector of eta, eta = X*beta. |
Value
A numeric vector representing the diagonal elements of the W matrix (nu(eta)).
Examples
eta = c(1,2,3,4)
nu_identity_self(eta)
function to calculate w = nu(eta) given eta for log link
Description
function to calculate w = nu(eta) given eta for log link
Usage
nu_log_self(x)
Arguments
x |
Numeric vector of eta, eta = X*beta. |
Value
A numeric vector representing the diagonal elements of the W matrix (nu(eta)).
Examples
eta = c(1,2,3,4)
nu_log_self(eta)
function to calculate w = nu(eta) given eta for logit link
Description
function to calculate w = nu(eta) given eta for logit link
Usage
nu_logit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
diagonal element of W matrix which is nu(eta)
Examples
eta = c(1,2,3,4)
nu_logit_self(eta)
function to calculate w = nu(eta) given eta for loglog link
Description
function to calculate w = nu(eta) given eta for loglog link
Usage
nu_loglog_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
diagonal element of W matrix which is nu(eta)
Examples
eta = c(1,2,3,4)
nu_loglog_self(eta)
function to calculate w = nu(eta) given eta for probit link
Description
function to calculate w = nu(eta) given eta for probit link
Usage
nu_probit_self(x)
Arguments
x |
vector of eta, eta=X*beta |
Value
diagonal element of W matrix which is nu(eta)
Examples
eta = c(1,2,3,4)
nu_probit_self(eta)
functions to solve 2th order polynomial function given coefficients
Description
functions to solve 2th order polynomial function given coefficients
Usage
polynomial_sol_J3(c0, c1, c2)
Arguments
c0 |
constant coefficient of polynomial function |
c1 |
coefficient of 1st order term |
c2 |
coefficient of 2nd order term |
Value
sol the 2 solutions of the polynomial function
Examples
polynomial_sol_J3(-2,-3, 1)
functions to solve 3th order polynomial function given coefficients
Description
functions to solve 3th order polynomial function given coefficients
Usage
polynomial_sol_J4(c0, c1, c2, c3)
Arguments
c0 |
constant coefficient of polynomial function |
c1 |
coefficient of 1st order term |
c2 |
coefficient of 2nd order term |
c3 |
coefficient of 3rd order term |
Value
sol the 3 solutions of the polynomial function
Examples
polynomial_sol_J4(0,9,6,1)
functions to solve 4th order polynomial function given coefficients
Description
functions to solve 4th order polynomial function given coefficients
Usage
polynomial_sol_J5(c0, c1, c2, c3, c4)
Arguments
c0 |
constant coefficient of polynomial function |
c1 |
coefficient of 1st order term |
c2 |
coefficient of 2nd order term |
c3 |
coefficient of 3rd order term |
c4 |
coefficient of 4th order term |
Value
sol the 4 solutions of the polynomial function
Examples
polynomial_sol_J5(19,-53,19,-21,30)
Print Method for Design Output from ForLion Algorithms
Description
Custom print method for a list containing design information.
Usage
## S3 method for class 'design_output'
print(x, ...)
Arguments
x |
An object of class 'design_output'. |
... |
Additional arguments (ignored). |
Value
Invisibly returns 'x'.
Print Method for list_output Objects
Description
Custom print method for objects of class 'list_output'.
Usage
## S3 method for class 'list_output'
print(x, ...)
Arguments
x |
An object of class 'list_output'. |
... |
Additional arguments (ignored). |
Value
Invisibly returns 'x' (the input object).
SVD Inverse Of A Square Matrix
Description
This function returns the inverse of a matrix using singular value decomposition. If the matrix is a square matrix, this should be equivalent to using the solve function. If the matrix is not a square matrix, then the result is the Moore-Penrose pseudo inverse.
Usage
svd_inverse(x)
Arguments
x |
the matrix for calculation of inverse |
Value
the inverse of the matrix x
Examples
x = diag(4)
svd_inverse(x)
Generate initial designs within ForLion algorithms
Description
Generate initial designs within ForLion algorithms
Usage
xmat_discrete_self(xlist, rowmax = NULL)
Arguments
xlist |
a list of factor levels within ForLion algorithms, for example, a binary factor might be c(-1,1), a continuous factor within range of (25,45) will be c(25, 45). |
rowmax |
maximum number of rows of the design matrix |
Value
design matrix of all possible combinations of discrete factors levels with min and max of the continuous factors.
Examples
#define list of factor levels for one continuous factor, four binary factors
factor.level.temp = list(c(25,45),c(-1,1),c(-1,1),c(-1,1),c(-1,1))
xmat_discrete_self(xlist = factor.level.temp)