Title: | Fuzzy Logic Rule Classifier |
Version: | 1.0 |
Date: | 2012-03-11 |
Author: | Constantinos Mavridis and Ioannis N. Athanasiadis |
Maintainer: | Constantinos Mavridis <consmavr@gmail.com> |
Description: | FLR algorithm for classification |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Repository: | CRAN |
Date/Publication: | 2014-05-06 13:19:42 |
Depends: | combinat |
Packaged: | 2014-05-06 10:54:23 UTC; Sinigami |
NeedsCompilation: | no |
Accuracy of FLR
Description
Accuracy of the flr classification.
Usage
accIs(testData,testDataB)
Arguments
testData |
an input data.frame of the test after classification. |
testDataB |
an input data.frame of the original test data. |
Value
return the accuracy of the classification
dataset001
Description
Dataset with 296 instances if 25 attributes.
Usage
data(dataset001)
Format
A data frame with 296 instances on the following 25 variables.
state
9 US states.
county
County.
site.id
Site id.
latitude
Latitude.
longitude
Longtitude.
X2009.2011.dv
2009.2011 dv.
X2010.2012.dv
2010.2012 dv.
X2009.2011.design.value..ppm.2.3
2009-2011 design value (ppm)2,3
X2010.2012.design.value..ppm...estimated.
2010-2012 design value (ppm) [estimated].
X2009.2011.design.value.status4
2009-2011 design value status4.
percent.complete.in.20095
percent complete in 20095.
percent.complete.in.20105
percent complete in 20105.
percent.complete.in.20115
percent complete in 20115.
X2009.2011.average.percent.complete
2009-2011 average percent complete.
X..of.days.above.the.naaqs.in.2009
# of days above the naaqs in 2009.
X..of.days.above.the.naaqs.in.2010
# of days above the naaqs in 2010.
X..of.days.above.the.naaqs.in.2011
# of days above the naaqs in 2011.
X..of.days.above.the.naaqs.in.2012
# of days above the naaqs in 2012.
X4th.highest.daily.max.value.in.2009
4th highest daily max value in 2009.
X4th.highest.daily.max.value.in.2010
4th highest daily max value in 2010.
X4th.highest.daily.max.value.in.2011
4th highest daily max value in 2011.
X4th.highest.daily.max.value.in.2012.
4th highest daily max value in 2012.
column_27
Column_27.
column_29
Column_29.
class
Class category.
Source
geocommons.com
References
geocommons.com
Denormalize Fuzzy Lattices.
Description
Denormalize fuzzy lattices.
Usage
denormDatal(fuzlat,bounds)
Arguments
fuzlat |
a fuzzy lattice containing mix and max value for each instance of the data set at the first columns,from left to right, followed by className and categ. |
bounds |
a 2 comumn matrix containing min and max value for each instance of the dataset. |
Value
return denormalized fuzzy lattice.
Constructs A Fuzzy Lattice
Description
Constructs a Fuzzy Lattice from an instance of the dataset.
Usage
fuzzyLatticec(dF,dR,bounds)
Arguments
dF |
an empty list containing just the names for each fuzzy lattice column. |
dR |
an instance of the dataset |
bounds |
a 2 comumn matrix containing min and max value for each instance of the dataset. |
Value
return a fuzzy lattice (min and max value for each attribute, className,categ).
Index Calculator
Description
Returns a vector that contains the number of rules created for each class.
Usage
indexCalc(learnedCode)
Arguments
learnedCode |
a data.frame of fuzzy lattices. Each lattice is a rule created with the trainNow function. |
Value
return a vector that contains the number of rules created for each class.
Graph distance matrix
Description
A matrix containing the distances of the nodes in a graph.
Usage
data(mat)
Format
A data frame of 9 rows and 9 columns.
Illinois
number
Indiana
number
Kentucky
number
Michigan
number
North.Carolina
number
Ohio
number
Pennsylvania
number
Tennessee
number
Virginia
number
Normalize Data and Denormalize data.
Description
Normalize Data to be in range of 0~1.
Usage
normData(data1)
denormData(data1,bounds)
Arguments
data1 |
an input data.frame where last instance must be the class instance and be named 'class'. |
bounds |
a 2 comumn matrix containing min and max value for each instance of the dataset. |
Value
return normalized or denormalized data.frame.
Prepare Dataset
Description
Alters the dataset in a form that can be used for training and classification.
Usage
prepData(data)
Arguments
data |
an input data.frame where last instance must be the class instance and be named 'class'. |
Value
return the data.frame without missing class instances and converts nominal attributes into numeric.
Flags Instances
Description
Randomly flags instances in order to be used as training(0) or testing(1) data with the ratio depending on variable gg.
Usage
sepFlag(gg,data1)
Arguments
gg |
percentage of instances to be used as training data for the classification. |
data1 |
an input data.frame where last instance must be the class instance and be named 'class'. |
Value
return original data with a flag column added at the end.
Creates A Boundaries File.
Description
Creates a boundaries of min and max columns for each attribute of a dataset.
Usage
set_bounds(data1)
Arguments
data1 |
an input data.frame where last instance must be the class instance and be named 'class'. |
Value
return a data.frame of 2 columns (min,max) for each instance of the data(NOT class).
Spatial Data Handling
Description
Creates a linear connection between spatial data in order to be used for classification.
Usage
spatdt(data,idx,mat,pre_order=0,snd=0)
get.cost(zzz,mat)
get.cost2(pre_order,mat)
get.pos(instz)
winner.route(cost)
Arguments
data |
an input data.frame |
idx |
indicates the position of the spatial data attribute. |
mat |
a matrix indicating distances |
pre_order |
predefined order |
snd |
indicates which node will be used as the starting one. The default value 0 means that the best route will be chosen, without taking into consideration which the starting node will be. |
zzz |
a route |
instz |
instance |
cost |
cost of routes |
Value
return a list of 3 objects: a) The modified dataset, b) winner route, c) the total distance of the route.
Examples
#Import data
data(dataset001)
data<-dataset001
data(mat)
idx<-1
rhoa<-0.6
param<-"sigmoid"
pre_order<-c(1,2,3,4,5,6,7,8,9)
#Data preprocess
data<-spatdt(data,idx,mat,pre_order)
Creates Testing And Training Samples
Description
Creates testing and training samples from the original data.
Usage
testD(data2)
trainD(data2)
Arguments
data2 |
a data.frame flaged with the sepFlag function. |
Value
return the training and testing samples that will be used for the classification.
Testing Phase Of FLR
Description
Implements classification using FLR on a data.frame.
Usage
testNow(testData,learnedCode)
Arguments
testData |
an input data.frame. |
learnedCode |
a data.frame of fuzzy lattices. Each lattice is a rule created with the trainNow function. |
Value
return the testData data.frame after classification.
Training Phase Of FLR
Description
Creates rules for classification using FLR.
Usage
trainNow(trainData,param,rhoa=0.5,l=6,x0=0.5,EPSILON=10^(-6))
join(inpBuf,num)
theta(x,x0,param)
ufun(x,x0,l,param)
valuation(fuzlat,x0,l,param)
createNframe(trainData)
createNlist(trainData)
Arguments
trainData |
an input data.frame. |
param |
parameter indicating linear positive valuation for 0 and sigmoid positive valuation for 1. The default value is set to 0. |
rhoa |
vigilance parameter in range [0,1]. The default value is set to 0.6. |
l |
parameter of u and theta functions of FLR. The default value is set to 6. |
x0 |
parameter of u and theta functions of FLR. The default value is set to 0.4. |
EPSILON |
parameter EPSILON.The default value is set to 10^(-6). |
inpBuf |
input buffer. |
num |
num |
x |
fuzzy lattice |
fuzlat |
fuzzy lattice |
Value
return a data.frame of the learned code.