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fkf.SP Fast Kalman Filtering using Sequential Processing.

Description

The fkf.SP function performs fast and flexible Kalman filtering using sequential processing. It
is designed for efficient parameter estimation through maximum likelihood estimation. Sequential
processing (SP) is a univariate treatment of a multivariate series of observations that increases com-
putational efficiency over traditional Kalman filtering in the general case. SP takes the additional
assumption that the variance of disturbances in the measurement equation are independent. fkf.SP
is based from the fkf function of the FKF package but is, in general, a faster Kalman filtering
method. fkf and fkf.SP share identical arguments (except for the GGt argument, see Arguments).
fkf.SP is compatible with missing observations (i.e. NA’s in argument yt).

Usage

fkf.SP(
a0,
P0,
dt,
ct,
Tt,
Zt,
HHt,
GGt,
yt,
verbose = FALSE,
smoothing = FALSE

)

Arguments

a0 A vector giving the initial value/estimation of the state variable

P0 A matrix giving the variance of a0

dt A matrix giving the intercept of the transition equation
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ct A matrix giving the intercept of the measurement equation

Tt An array giving factor of the transition equation

Zt An array giving the factor of the measurement equation

HHt An array giving the variance of the innovations of the transition equation

GGt A vector giving the diagonal elements of the matrix for the variance of dis-
turbances of the measurement equation. Covariance between disturbances is not
supported under the sequential processing method.

yt A matrix containing the observations. "NA"- values are allowed

verbose A logical. When verbose = TRUE, A list object is output, which provides
filtered values of the Kalman filter (see Value).

smoothing A logical. When smoothing = TRUE, Kalman smoothing is additionally per-
formed and smoothed values returned (see Value).

Details

Parameters:

The fkf.SP function builds upon the fkf function of the FKF package by adjusting the Kalman
filtering algorithm to utilize sequential processing. Sequential processing can result in significant
decreases in processing time over the traditional Kalman filter algorithm. Sequential processing has
been empirically shown to grow linearly with respect to the dimensions of yt, rather than exponen-
tially as is the case with the traditional Kalman filter algorithm (Aspinall et al., 2022, P104).

The fkf.SP and fkf functions feature highly similar arguments for compatibility purposes; only
argument GGt has changed from an array type object to a vector or matrix type object. The
fkf.SP function takes the additional assumption over the fkf function that the variance of the
disturbances of the measurement equation are independent; a requirement of SP (see below).

Parameters can either be constant or deterministic time-varying. Assume the number of discrete
time observations is n i.e. y = yt where t = 1, · · · , n. Let m be the dimension of the state variable
and d the dimension of the observations. Then, the parameters admit the following classes and
dimensions:

dt either a m× n (time-varying) or a m× 1 (constant) matrix.
Tt either a m×m× n or a m×m× 1 array.
HHt either a m×m× n or a m×m× 1 array.
ct either a d× n or a d× 1 matrix.
Zt either a d×m× n or a d×m× 1 array.
GGt either a d× n (time-varying) or a d× 1 matrix.
yt a d× n matrix.

State Space Form
The following notation follows that of Koopman et al. (1999). The Kalman filter is characterized
by the transition and measurement equations:

αt+1 = dt + Tt · αt +Ht · ηt
yt = ct + Zt · αt +Gt · ϵt
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where ηt and ϵt are i.i.d. N(0, Im) and i.i.d. N(0, Id), respectively, and αt denotes the state vector.
The parameters admit the following dimensions:

at ∈ Rm dt ∈ Rm ηt ∈ Rm

Tt ∈ Rm×m Ht ∈ Rm×m

yt ∈ Rd ct ∈ Rd ϵt ∈ Rd

Zt ∈ Rd×m Gt ∈ Rd×d

Note that fkf.SP takes as input HHt and GGt which corresponds to HtH
′
t and diag(Gt)

2 respec-
tively.

Sequential Processing Iteration:

Traditional Kalman filtering takes the entire observational vector yt as the items for analysis. SP is
an alternate approach that filters the elements of yt one at a time. Sequential processing is described
in the textbook of Durbin and Koopman (2001) and is described below.

Let p equal the number of observations at time t (i.e. when considering possible missing observa-
tions p ≤ d). The SP iteration involves treating the vector series: y1, · · · , yn instead as the scalar
series y1,1, · · · , y(1,p), y2,1, · · · , y(n,pn). This univariate treatment of the multivariate series has the
advantage that the function of the covariance matrix, Ft, becomes 1 × 1, avoiding the calculation
of both the inverse and determinant of a p × p matrix. This can increase computational efficiency
(especially under the case of many observations, i.e. p is large)

For any time point, the observation vector is given by:

y′t = (y(t,1), · · · , y(t,p))

The filtering equations are written as:

at,i+1 = at,i +Kt,ivt,i

Pt,i+1 = Pt,i −Kt,iFt,iK
′
t,i

Where:
ŷt,i = ct + Zt · at,i
vt,i = yt,i − ŷt,i

Ft,i = Zt,iPt,iZ
′
t,i +GGtt,i

Kt,i = Pt,iZ
′
t,iF

−1
t,i

i = 1, · · · , p

Transition from time t to t+ 1 occurs through the standard transition equations.

αt+1,1 = dt + Tt · αt,p

Pt+1,1 = Tt · Pt,p · T ′
t +HHt

The log-likelihood at time t is given by:
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logLt = −p

2
log(2π)− 1

2

p∑
i=1

(logFi +
v2i
Fi

)

Where the log-likelihood of observations is:

logL =

n∑
t

logLt

Compiled Code:

fkf.SP wraps the C-functions fkf_SP, fkf_SP_verbose and fkfs_SP, which each rely upon the
linear algebra subroutines of BLAS (Basic Linear Algebra Subprograms). These C-functions are
called when verbose = FALSE, verbose = TRUE and smoothing = TRUE, respectively.

The difference in these compiled functions are in the values returned from them. The fkfs_SP
also performs Kalman filtering and subsequently smoothing within the singular compiled C-code
function.

Value

A numeric value corresponding to the log-likelihood calculated by the Kalman filter. Ideal for
maximum likelihood estimation through optimization routines such as optim.

When verbose = TRUE, an S3 class of type ’fkf.SP’ with the following elements is also returned,
corresponding to the filtered state variables and covariances of the Kalman filter algorithm:

att A m× n-matrix containing the filtered state variables, i.e. att[,t] = at|t.
at A m× (n+ 1)-matrix containing the predicted state variables, i.e. at[,t] = at.

Ptt A m×m× n-array containing the variance of att, i.e. Ptt[,,t] = Pt|t.
Pt A m×m× (n+ 1)-array containing the variance of at, i.e. Pt[,,t] = Pt.
yt A d× n-matrix containing the input observations.
Tt either a m×m× n or a m×m× 1-array, depending on the argument provided.
Zt either a d×m× n or a d×m× 1-array, depending on the argument provided.

Ftinv A d× n-matrix containing the scalar inverse of the prediction error variances.
vt A d× n-matrix containing the observation error.
Kt A m× d× n-array containing the Kalman gain of state variables at each observation.

logLik The log-likelihood.

In addition to the elements above, the following elements corresponding to the smoothed values
output from Kalman smoothing are also returned when smoothing = TRUE. The fks.SP provides
more detail regarding Kalman smoothing.

ahatt A m× n-matrix containing the smoothed state variables, i.e. ahatt[,t] = at|n
Vt A m×m× n-array containing the variances of ahatt, i.e. Vt[,,t] = Pt|n

Log-Likelihood Values:
When there are no missing observations (i.e. "NA" values) in argument yt, the return of function
fkf.SP and the logLik object returned within the list of function fkf are identical. When NA’s
are present, however, log-likelihood values returned by fkf.SP are always higher. This is due to
low bias in the log-likelihood values output by fkf, but does not influence parameter estimation.
Further details are available within this package’s vignette.
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Examples

## <-------------------------------------------------------------------------------
##Example 1 - Filter a state space model - Nile data
## <-------------------------------------------------------------------------------

# Observations must be a matrix:
yt <- rbind(datasets::Nile)

## Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- yt[1] # Estimation of the first year flow
P0 <- matrix(100) # Variance of 'a0'
## These can be estimated through MLE:
GGt <- matrix(15000)
HHt <- matrix(1300)

# 'verbose' returns the filtered values:
output <- fkf.SP(a0 = a0, P0 = P0, dt = dt, ct = ct,

Tt = Tt, Zt = Zt, HHt = HHt, GGt = GGt,
yt = yt, verbose = TRUE)

## <-------------------------------------------------------------------------------
##Example 2 - ARMA(2,1) model estimation.
## <-------------------------------------------------------------------------------

#Length of series
n <- 1000

#AR parameters
AR <- c(ar1 = 0.6, ar2 = 0.2, ma1 = -0.2, sigma = sqrt(0.2))

## Sample from an ARMA(2, 1) process
a <- stats::arima.sim(model = list(ar = AR[c("ar1", "ar2")], ma = AR["ma1"]), n = n,

https://research.bond.edu.au/en/studentTheses/the-estimation-of-commodity-pricing-models-with-applications-in-c
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innov = rnorm(n) * AR["sigma"])

##State space representation of the four ARMA parameters
arma21ss <- function(ar1, ar2, ma1, sigma) {
Tt <- matrix(c(ar1, ar2, 1, 0), ncol = 2)
Zt <- matrix(c(1, 0), ncol = 2)
ct <- matrix(0)
dt <- matrix(0, nrow = 2)
GGt <- matrix(0)
H <- matrix(c(1, ma1), nrow = 2) * sigma
HHt <- H %*% t(H)
a0 <- c(0, 0)
P0 <- matrix(1e6, nrow = 2, ncol = 2)
return(list(a0 = a0, P0 = P0, ct = ct, dt = dt, Zt = Zt, Tt = Tt, GGt = GGt,

HHt = HHt))
}

## The objective function passed to 'optim'
objective <- function(theta, yt) {
sp <- arma21ss(theta["ar1"], theta["ar2"], theta["ma1"], theta["sigma"])
ans <- fkf.SP(a0 = sp$a0, P0 = sp$P0, dt = sp$dt, ct = sp$ct, Tt = sp$Tt,

Zt = sp$Zt, HHt = sp$HHt, GGt = sp$GGt, yt = yt)
return(-ans)

}

## Parameter estimation - maximum likelihood estimation:
theta <- c(ar = c(0, 0), ma1 = 0, sigma = 1)
ARMA_MLE <- optim(theta, objective, yt = rbind(a), hessian = TRUE)

## <-------------------------------------------------------------------------------
#Example 3 - Nile Model Estimation:
## <-------------------------------------------------------------------------------

#Nile's annual flow:
yt <- rbind(Nile)

##Incomplete Nile Data - two NA's are present:
yt[c(3, 10)] <- NA

## Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- yt[1] # Estimation of the first year flow
P0 <- matrix(100) # Variance of 'a0'

## Parameter estimation - maximum likelihood estimation:
##Unknown parameters initial estimates:
GGt <- HHt <- var(c(yt), na.rm = TRUE) * .5
#Perform maximum likelihood estimation
Nile_MLE <- optim(c(HHt = HHt, GGt = GGt),

fn = function(par, ...)
-fkf.SP(HHt = matrix(par[1]), GGt = matrix(par[2]), ...),
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yt = yt, a0 = a0, P0 = P0, dt = dt, ct = ct,
Zt = Zt, Tt = Tt)

## <-------------------------------------------------------------------------------
#Example 4 - Dimensionless Treering Example:
## <-------------------------------------------------------------------------------

## tree-ring widths in dimensionless units
y <- treering

## Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- y[1] # Estimation of the first width
P0 <- matrix(100) # Variance of 'a0'

## Parameter estimation - maximum likelihood estimation:
Treering_MLE <- optim(c(HHt = var(y, na.rm = TRUE) * .5,

GGt = var(y, na.rm = TRUE) * .5),
fn = function(par, ...)

-fkf.SP(HHt = array(par[1],c(1,1,1)), GGt = matrix(par[2]), ...),
yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct,
Zt = Zt, Tt = Tt)

fks.SP Fast Kalman Smoother through Sequential Processing

Description

The Kalman smoother is a backwards algorithm that is run after the Kalman filter that allows the user
to refine estimates of previous states to produce "smoothed" estimates of state variables. This func-
tion performs the "Kalman smoother" algorithm using sequential processing, an approach that can
substantially improve processing time over the traditional Kalman filtering/smoothing algorithms.
The primary application of Kalman smoothing is in conjunction with expectation-maximization
to estimate the parameters of a state space model. This function is called after running fkf.SP.
fks.SP wraps the C-function fks_SP which relies upon the linear algebra subroutines of BLAS
(Basic Linear Algebra Subprograms).

Usage

fks.SP(FKF.SP_obj)

Arguments

FKF.SP_obj An S3-object of class "fkf.SP", returned by fkf.SP when using the argument
verbose = TRUE.
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Details

fks.SP is typically called after the fkf.SP function to calculate "smoothed" estimates of state vari-
ables and their corresponding variances. Smoothed estimates are used when utilizing expectation-
maximization (EM) to efficiently estimate the parameters of a state space model.

Sequential Processing Kalman smoother solution:

The fks.SP function uses the solution to the Kalman smoother through sequential processing pro-
vided in the textbook of Durbin and Koopman (2001).

Given a state space model has been filtered through the sequential processing Kalman filter algo-
rithm described in fkf.SP, the smoother can be reformulated for the univariate series:

y′t = (y(1,1), y(1,2), · · · , y(1,p1), y(2,1), · · · , y(t,pt))

The sequential processing Kalman smoother approach iterates backwards through both observations
and time, i.e.: i = pt, · · · , 1 and t = n, · · · , 1, where pt is the number of observations at time t and
n is the total number of observations.

The initialisations are:

r(n,pn) = 0

N(n,pn) = 0

Then, r and N are recursively calculated through:

Lt,i = Im −Kt,iZt,i

r(t,i−1) = Z ′
t,iF

−1
t,i vt,i + L′

t,irt,i

Nt,i−1 = Z ′
t,iF

−1
t,i Zt,i + L′

t,iNt,iLt,i

rt−1,pt = T ′
t−1rt,0

Nt−1,pt
= T ′

t−1Nt,0Tt−1

for i = pt, · · · , 1 and t = n, · · · , 1
The equations for rt−1, pt and Nt−1,pt

do not apply for t = 1

Under this formulation, the values for rt,0 and Nt,0 are the same as the values for the smoothing
quantities of rt−1 and Nt−1 of the standard smoothing equations, respectively.

The standard smoothing equations for ât and Vt are used:

ât = at + Ptrt−1

Vt = Pt − PtNt−1Pt
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Where:

at = at,1

Pt = Pt,1

In the equations above, rt,i is an m × 1 vector, Im is an m ×m identity matrix, Kt,i is an m × 1
column vector, Zt,i is a 1 ×m row vector, and both F−1

t,i and vt,i are scalars. The reduced dimen-
sionality of many of the variables in this formulation compared to traditional Kalman smoothing
can result in increased computational efficiency.

Finally, in the formulation described above, at and Pt correspond to the values of att and ptt
returned from the fkf.SP function, respectively.

Value

An S3-object of class fks.SP, which is a list with the following elements:

ahatt A m× n-matrix containing the smoothed state variables, i.e. ahatt[,t] = at|n
Vt A m×m× n-array containing the variances of ahatt, i.e. Vt[,,t] = Pt|n

References
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Examples

### Perform Kalman Filtering and Smoothing through sequential processing:
#Nile's annual flow:
yt <- Nile

# Incomplete Nile Data - two NA's are present:
yt[c(3, 10)] <- NA

dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- yt[1] # Estimation of the first year flow
P0 <- matrix(100) # Variance of 'a0'

# Parameter estimation - maximum likelihood estimation:
# Unknown parameters initial estimates:
GGt <- HHt <- var(yt, na.rm = TRUE) * .5
HHt = matrix(HHt)
GGt = matrix(GGt)
yt = rbind(yt)
# Filter through the Kalman filter - sequential processing:
Nile_filtered <- fkf.SP(HHt = matrix(HHt), GGt = matrix(GGt), a0 = a0, P0 = P0, dt = dt, ct = ct,

https://research.bond.edu.au/en/studentTheses/the-estimation-of-commodity-pricing-models-with-applications-in-c
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Zt = Zt, Tt = Tt, yt = rbind(yt), verbose = TRUE)
# Smooth filtered values through the Kalman smoother - sequential processing:
Smoothed_Estimates <- fks.SP(Nile_filtered)
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