Version: 0.0.4-1
Date: 2025-04-26
Title: Extreme Risk Measures
Author: Simone Padoan [cre, aut], Gilles Stupfler [aut], Bocconi Institute for Data Science and Analytics [fnd], French National Research [fnd] (grant ANR-19-CE40-0013-01/ExtremReg)
Maintainer: Simone Padoan <simone.padoan@unibocconi.it>
Imports: evd, copula, mvtnorm, plot3D, tmvtnorm, pracma
Depends: R (≥ 3.5.0)
Description: A set of procedures for estimating risks related to extreme events via risk measures such as Expectile, Value-at-Risk, etc. is provided. Estimation methods for univariate independent observations and temporal dependent observations are available. The methodology is extended to the case of independent multidimensional observations. The statistical inference is performed through parametric and non-parametric estimators. Inferential procedures such as confidence intervals, confidence regions and hypothesis testing are obtained by exploiting the asymptotic theory. Adapts the methodologies derived in Padoan and Stupfler (2022) <doi:10.3150/21-BEJ1375>, Davison et al. (2023) <doi:10.1080/07350015.2022.2078332>, Daouia et al. (2018) <doi:10.1111/rssb.12254>, Drees (2000) <doi:10.1214/aoap/1019487617>, Drees (2003) <doi:10.3150/bj/1066223272>, de Haan and Ferreira (2006) <doi:10.1007/0-387-34471-3>, de Haan et al. (2016) <doi:10.1007/s00780-015-0287-6>.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://faculty.unibocconi.it/simonepadoan/
NeedsCompilation: yes
Repository: CRAN
Repository/R-Forge/Project: extremerisks
Packaged: 2025-04-26 09:35:08 UTC; padoan
Repository/R-Forge/Revision: 18
Repository/R-Forge/DateTimeStamp: 2020-08-27 07:33:03
Date/Publication: 2025-04-27 02:00:05 UTC

Expectile Based Tail Index Estimation

Description

Computes a point estimate of the tail index based on the Expectile Based (EB) estimator.

Usage

EBTailIndex(data, tau, est=NULL)

Arguments

data

A vector of (1 \times n) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details\.

est

A real specifying the estimate of the expectile at the intermediate level tau.

Details

For a dataset data of sample size n, the tail index \gamma of its (marginal) distribution is estimated using the EB estimator:

\hat{\gamma}_n^E =\left(1+\frac{\hat{\bar{F}}_n(\tilde{\xi}_{\tau_n})}{1-\tau_n}\right)^{-1} ,

where \hat{\bar{F}}_n is the empirical survival function of the observations, \tilde{\xi}_{\tau_n} is an estimate of the \tau_n-th expectile. The observations can be either independent or temporal dependent. See Padoan and Stupfler (2020) and Daouia et al. (2018) for details.

Value

An estimate of the tain index \gamma.

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.

See Also

HTailIndex, MomTailIndex, MLTailIndex,

Examples

# Tail index estimation based on the Expectile based estimator obtained with data
# simulated from an AR(1) with 1-dimensional Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallblock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.97

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- EBTailIndex(data, tau)
gammaHat

Marginal Expected Shortfall Expectile Based Estimation

Description

Computes a point and interval estimate of the Marginal Expected Shortfall (MES) using an expectile based approach.

Usage

ExpectMES(data, tau, tau1, method="LAWS", var=FALSE, varType="asym-Dep", bias=FALSE,
          bigBlock=NULL, smallBlock=NULL, k=NULL, alpha_n=NULL, alpha=0.05)

Arguments

data

A vector of (1 \times n) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

tau1

A real in (0,1) specifying the extreme level \tau'_n. See Details.

method

A string specifying the method used to estimate the expecile. By default est="LAWS" specifies the use of the LAWS based estimator. See Details.

var

If var=TRUE then an estimate of the asymptotic variance of the MES estimator is computed.

varType

A string specifying the type of asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for serial dependent observations. See Details.

bias

A logical value. By default bias=FALSE specifies that no bias correction is computed. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha_n

A real in (0,1) specifying the quantile's extreme level to be use in order to estimate the expectile's extreme level.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the \tau'_n-th MES is computed. The estimation of the MES at the extreme level tau1 (\tau'_n) is indeed meant to be a prediction. Two estimators are available: the so-called Least Asymmetrically Weighted Squares (LAWS) based estimator and the Quantile-Based (QB) estimator. The definition of both estimators depends on the estimation of the tail index \gamma. Here, \gamma is estimated using the Hill estimation (see HTailIndex for details). The observations can be either independent or temporal dependent. See Section 4 in Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance. Bernoulli, 9, 617-657.

Drees, H. (2000). Weighted approximations of tail processes for \beta-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random sequences and processes. Springer.

See Also

QuantMES, HTailIndex, predExpectiles, extQuantile

Examples

# Marginl Expected Shortfall expectile based estimation at the extreme level
# obtained with 2-dimensional data simulated from an AR(1) with bivariate
# Student-t distributed innovations

tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
alpha_n <- 0.999

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)


# Extreme MES expectile based estimation
MESHat <- ExpectMES(data, NULL, NULL, var=TRUE, k=150, bigBlock=bigBlock,
                    smallBlock=smallBlock, alpha_n=alpha_n)
MESHat


Hill Tail Index Estimation

Description

Computes a point and interval estimate of the tail index based on the Hill's estimator.

Usage

HTailIndex(data, k, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
           smallBlock=NULL, alpha=0.05)

Arguments

data

A vector of (1 \times n) observations.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

var

If var=TRUE then an estimate of the variance of the tail index estimator is computed.

varType

A string specifying the asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for serial dependent observations. See Details.

bias

A logical value. By default biast=FALSE specifies that no bias correction is computed. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the tail index.

Details

For a dataset data of sample size n, the tail index \gamma of its (marginal) distribution is computed by applying the Hill estimator. The observations can be either independent or temporal dependent.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.

Drees, H. (2000). Weighted approximations of tail processes for \beta-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random sequences and processes. Springer.

See Also

MLTailIndex, MomTailIndex, EBTailIndex

Examples

# Tail index estimation based on the Hill estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat1 <- HTailIndex(data, k, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat1$gammaHat
gammaHat1$CIgamHat

# tail index estimation with bias correction
gammaHat2 <- HTailIndex(data, 2*k, TRUE, bias=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat2$gammaHat-gammaHat2$BiasGamHat
gammaHat2$CIgamHat

Wald-Type Hypothesis Testing

Description

Wald-type hypothesis tes for testing equality of high or extreme expectiles and quantiles

Usage

HypoTesting(data, tau, tau1=NULL, type="ExpectRisks", level="extreme",
            method="LAWS", bias=FALSE, k=NULL, alpha=0.05)

Arguments

data

A matrix of (n \times d) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

tau1

A real in (0,1) specifying the extreme level \tau'_n. See Details.

type

A string specifying the type of test. By default type="ExpectRisks" specifies the test for testing the equality of expectiles. See Details.

level

A string specifying the level of the expectile. This make sense when type="ExpectRisks". By default level="extreme" specifies that the test concerns expectiles at the extreme level. See Details.

method

A string specifying the method used to estimate the expecile. By default est="LAWS" specifies the use of the LAWS based estimator. See Details.

bias

A logical value. By default bias=FALSE specifies that no bias correction is computed. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha

A real in (0,1) specifying the significance level of the test.

Details

With a dataset data of d-dimensional observations and sample size n, a Wald-type hypothesis testing is performed in order to check whether the is empirical evidence against the null hypothesis. The null hypothesis concerns the equality among the expectiles or quantiles or tail indices of the marginal distributions. The three tests depend on the depends on the estimation of the d-dimensional tail index \gamma. Here, \gamma is estimated using the Hill estimation (see MultiHTailIndex for details). The data are regarded as d-dimensional temporal independent observations coming from dependent variables. See Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

MultiHTailIndex, predMultiExpectiles, extMultiQuantile

Examples

# Hypothesis testing on the equality extreme expectiles based on a sample of
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# Performs Wald-type hypothesis testing
HypoTesting(data, tau, tau1)

# Hypothesis testing on the equality extreme expectiles based on a sample of
# d-dimensional observations simulated from a joint distribution with
# a Clayton copula and different Frechet marginal distributions.

# distributional setting
copula <- "Clayton"
dist <- "Frechet"

# parameter setting
dim <- 3
dep <- 2
scale <- rep(1, dim)
shape <- c(2.1, 3, 4.5)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# Performs Wald-type hypothesis testing
HypoTesting(data, tau, tau1)

Maximum Likelihood Tail Index Estimation

Description

Computes a point and interval estimate of the tail index based on the Maximum Likelihood (ML) estimator.

Usage

MLTailIndex(data, k, var=FALSE, varType="asym-Dep", bigBlock=NULL,
            smallBlock=NULL, alpha=0.05)

Arguments

data

A vector of (1 \times n) observations.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

var

If var=TRUE then an estimate of the asymptotic variance of the tail index estimator is computed.

varType

A string specifying the asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for serial dependent observations. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the tail index.

Details

For a dataset data of sample size n, the tail index \gamma of its (marginal) distribution is computed by applying the ML estimator. The observations can be either independent or temporal dependent.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Drees, H. (2000). Weighted approximations of tail processes for \beta-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random sequences and processes. Springer.

See Also

HTailIndex, MomTailIndex, EBTailIndex

Examples

# Tail index estimation based on the Maximum Likelihood estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- MLTailIndex(data, k, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
gammaHat$gammaHat
gammaHat$CIgamHat

Moment based Tail Index Estimation

Description

Computes a point estimate of the tail index based on the Moment Based (MB) estimator.

Usage

MomTailIndex(data, k)

Arguments

data

A vector of (1 \times n) observations.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

Details

For a dataset data of sample size n, the tail index \gamma of its (marginal) distribution is computed by applying the MB estimator. The observations can be either independent or temporal dependent. For details see de Haan and Ferreira (2006).

Value

An estimate of the tail index \gamma.

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.

See Also

HTailIndex, MLTailIndex, EBTailIndex

Examples

# Tail index estimation based on the Moment estimator obtained with
# 1-dimensional data simulated from an AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallblock <- 15

# Number of larger order statistics
k <- 150

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# tail index estimation
gammaHat <- MomTailIndex(data, k)
gammaHat

Multidimensional Hill Tail Index Estimation

Description

Computes point estimates and (1-\alpha)100\% confidence regions estimate of d-dimensional tail indices based on the Hill's estimator.

Usage

MultiHTailIndex(data, k, var=FALSE, varType="asym-Dep", bias=FALSE,
                alpha=0.05, plot=FALSE)

Arguments

data

A matrix of (n \times d) observations.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

var

If var=TRUE then an estimate of the variance-covariance matrix of the tail indices estimators is computed.

varType

A string specifying the asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for d dependent marginal variables. See Details.

bias

A logical value. By default biast=FALSE specifies that no bias correction is computed. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the tail index.

plot

A logical value. By default plot=FALSE specifies that no graphical representation of the estimates is provided. See Details.

Details

For a dataset data of (n \times d) observations, where d is the number of variables and n is the sample size, the tail index \gamma of the d marginal distributions is estimated by applying the Hill estimator. Together with a point estimate a (1-\alpha)100\% confidence region is computed. The data are regarded as d-dimensional temporal independent observations coming from dependent variables.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.

See Also

HTailIndex, rmdata

Examples

# Tail index estimation based on the multivariate Hill estimator obtained with
# n observations simulated from a d-dimensional random vector with a multivariate
# distribution with equal Frechet margins and a Clayton copula.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Clayton"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Number of larger order statistics
k <- 150

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Clayton copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# tail indices estimation
est <- MultiHTailIndex(data, k, TRUE)
est$gammaHat
est$VarCovGHat
# run the following command to see the graphical representation

 est <- MultiHTailIndex(data, k, TRUE, plot=TRUE)


Marginal Expected Shortfall Quantile Based Estimation

Description

Computes a point and interval estimate of the Marginal Expected Shortfall (MES) using a quantile based approach.

Usage

QuantMES(data, tau, tau1, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
         smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data

A vector of (1 \times n) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

tau1

A real in (0,1) specifying the extreme level \tau'_n. See Details.

var

If var=TRUE then an estimate of the asymptotic variance of the MES estimator is computed.

varType

A string specifying the type of asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for serial dependent observations. See Details.

bias

A logical value. By default bias=FALSE specifies that no bias correction is computed. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the \tau'_n-th MES is computed. The estimation of the MES at the extreme level tau1 (\tau'_n) is indeed meant to be a prediction. Estimates are obtained through the quantile based estimator defined in page 12 of Padoan and Stupfler (2020). Such an estimator depends on the estimation of the tail index \gamma. Here, \gamma is estimated using the Hill estimation (see HTailIndex for details). The observations can be either independent or temporal dependent. See Section 4 in Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance. Bernoulli, 9, 617-657.

Drees, H. (2000). Weighted approximations of tail processes for \beta-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random sequences and processes. Springer.

See Also

ExpectMES, HTailIndex, predExpectiles, extQuantile

Examples

# Marginl Expected Shortfall quantile based estimation at the extreme level
# obtained with 2-dimensional data simulated from an AR(1) with bivariate
# Student-t distributed innovations


tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)


# Extreme MES expectile based estimation
MESHat <- QuantMES(data, NULL, tau1, var=TRUE, k=150, bigBlock=bigBlock,
                   smallBlock=smallBlock)
MESHat


Negative log-returns of DOW JONES.

Description

Series of negative log-returns of the U.S. stock market index Dow Jones.

Format

A 8784*2 data frame.

Details

From the series of n = 8785 closing prices S_{t}, t=1,2,..., for the Dow Jones stock market index, recorded from January 29, 1985 to December 12, 2019, the series of negative log-returns.

X_{t+1} = - \log(S_{t+1}/S_t), \quad 1\leq t\leq n-1

is available. Hence the dataset (negative log-returns) contains 8784 observations.


High Expectile Estimation

Description

Computes a point and interval estimate of the expectile at the intermediate level.

Usage

estExpectiles(data, tau, method="LAWS", tailest="Hill", var=FALSE, varType="asym-Dep-Adj",
              bigBlock=NULL, smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data

A vector of (1 \times n) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

method

A string specifying the method used to estimate the expecile. By default est="LAWS" specifies the use of the direct LAWS estimator. See Details.

tailest

A string specifying the type of tail index estimator. By default tailest="Hill" specifies the use of Hill estimator. See Details.

var

If var=TRUE then an estimate of the variance of the expectile estimator is computed.

varType

A string specifying the asymptotic variance to compute. By default varType="asym-Dep-Adj" specifies the variance estimator for serial dependent observations implemented with a suitable adjustment. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the \tau_n-th expectile is computed. Two estimators are available: the so-called direct Least Asymmetrically Weighted Squares (LAWS) and indirect Quantile-Based (QB). The definition of the QB estimator depends on the estimation of the tail index \gamma. Here, \gamma is estimated using the Hill estimation (see HTailIndex) or in alternative using the the expectile based estimator (see EBTailIndex). The observations can be either independent or temporal dependent. See Section 3.1 in Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random sequences and processes. Springer.

See Also

HTailIndex, EBTailIndex, predExpectiles, extQuantile

Examples

# Extreme expectile estimation at the intermediate level tau obtained with
# 1-dimensional data simulated from an AR(1) with Student-t innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# High expectile (intermediate level) estimation
expectHat <- estExpectiles(data, tau, var=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
expectHat$ExpctHat
expectHat$CIExpct

Extreme Level Estimation

Description

Estimates the expectile's extreme level corresponding to a quantile's extreme level.

Usage

estExtLevel(alpha_n, data=NULL, gammaHat=NULL, VarGamHat=NULL, tailest="Hill", k=NULL,
            var=FALSE, varType="asym-Dep", bigBlock=NULL, smallBlock=NULL, alpha=0.05)

Arguments

alpha_n

A real in (0,1) specifying the extreme level \alpha_n for the quantile. See Details.

data

A vector of (1 \times n) observations to be used to estimate the tail index in the case it is not provided. By default data=NULL specifies that no data are given.

gammaHat

A real specifying an estimate of the tail index. By default gammaHat=NULL specifies that no estimate is given. See Details.

VarGamHat

A real specifying an estimate of the variance of the tail index estimate. By default VarGamHat=NULL specifies that no estimate is given. See Details.

tailest

A string specifying the type of tail index estimator to be used. By default tailest="Hill" specifies the use of Hill estimator. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

var

If var=TRUE then an estimate of the variance of the extreme level estimator is computed.

varType

A string specifying the asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for serial dependent observations. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the expecile at the intermedite level.

Details

For a given extreme level \alpha_n for the \alpha_n-th quantile, an estimate of the extreme level \tau_n'(\alpha_n) is computed such that \xi_{\tau_n'(\alpha_n)}=q_{\alpha_n}. The estimator is defined by

\hat{\tau}_n'(\alpha_n) = 1 - (1 - \alpha_n)\frac{\hat{\gamma}_n}{1-\hat{\gamma}_n}

where \hat{\gamma}_n is a consistent estimator of the tail index \gamma. If a value for the parameter gammaHat is given, then such a value is used to compute \hat{\tau}_n'. If gammaHat is NULL and a dataset is provided through the parameter data, then the tail index \gamma is estimated by a suitable estimator \hat{\gamma}_n. See Section 6 in Padoan and Stupfler (2020) for more details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.

See Also

estExpectiles, predExpectiles, extQuantile

Examples

# Extreme level estimation for a given quantile's extreme level alpha_n
# obtained with 1-dimensional data simulated from an AR(1) with Student-t innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# quantile's extreme level
alpha_n <- 0.999

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# expectile's extreme level estimation
tau1Hat <- estExtLevel(alpha_n, data, var=TRUE, k=150, bigBlock=bigBlock,
                       smallBlock=smallBlock)
tau1Hat

Multidimensional High Expectile Estimation

Description

Computes point estimates and (1-\alpha)100\% confidence regions for d-dimensional expectiles at the intermediate level.

Usage

estMultiExpectiles(data, tau, method="LAWS", tailest="Hill", var=FALSE,
                   varType="asym-Ind-Adj", k=NULL, alpha=0.05, plot=FALSE)

Arguments

data

A matrix of (n \times d) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

method

A string specifying the method used to estimate the expecile. By default est="LAWS" specifies the use of the direct LAWS estimator. See Details.

tailest

A string specifying the type of tail index estimator. By default tailest="Hill" specifies the use of Hill estimator. See Details.

var

If var=TRUE then an estimate of the variance of the expectile estimator is computed.

varType

A string specifying the asymptotic variance-covariance matrix to compute. By default varType="asym-Ind-Adj" specifies that the variance-covariance matrix is computed assuming dependent variables and exploiting a suitable adjustment. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence region for the d-dimensional expecile at the intermedite level.

plot

A logical value. By default plot=FALSE specifies that no graphical representation of the estimates is not provided. See Details.

Details

For a dataset data of d-dimensional observations and sample size n, an estimate of the \tau_n-th d-dimensional is computed. Two estimators are available: the so-called direct Least Asymmetrically Weighted Squares (LAWS) and indirect Quantile-Based (QB). The QB estimator depends on the estimation of the d-dimensional tail index \gamma. Here, \gamma is estimated using the Hill estimator (see MultiHTailIndex). The data are regarded as d-dimensional temporal independent observations coming from dependent variables. See Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

MultiHTailIndex, predMultiExpectiles, extMultiQuantile

Examples

# Extreme expectile estimation at the intermediate level tau obtained with
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- .95

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# High d-dimensional expectile (intermediate level) estimation
expectHat <- estMultiExpectiles(data, tau, var=TRUE)
expectHat$ExpctHat
expectHat$VarCovEHat
# run the following command to see the graphical representation

 expectHat <- estMultiExpectiles(data, tau, var=TRUE, plot=TRUE)


Expectile Computation

Description

Computes the true expectile for some families of parametric models.

Usage

expectiles(par, tau, tsDist="gPareto", tsType="IID", trueMethod="true",
           estMethod="LAWS", nrep=1e+05, ndata=1e+06, burnin=1e+03)

Arguments

par

A vector of (1 \times p) parameters of the time series parametric family. See Details.

tau

A real in (0,1) specifying the level \tau of the expectile to be computed. See Details.

tsDist

A string specifying the parametric family of the innovations distribution. By default tsDist="gPareto" specifies a Pareto family of distributions. See Details.

tsType

A string specifying the type of time series. By default tsType="IID" specifies a sequence of independent and indentically distributed random variables. See Details.

trueMethod

A string specifying the method used to computed the expecile. By default trueMethod="true" specifies that the true analytical expression to computed the expectile is used. See Details.

estMethod

A string specifying the method used to estimate the expecile. By default est="LAWS" specifies the use of the direct LAWS estimator. See Details.

nrep

A positive interger specifying the number of simulations to use for computing an approximation of the expectile. See Details.

ndata

A positive interger specifying the number of observations to genreated for each simulation. See Details.

burnin

A positive interger specifying the number of initial observations to discard from the simulated sample.

Details

For a parametric family of time series models or a parametric family of distributions (for the case of independent observations) the \tau-th expectile (or expectile of level tau) is computed.

Value

The \tau-th expectile.

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

See Also

rtimeseries

Examples

# Derivation of the true tau-th expectile for the Pareto distribution
# via accurate simulation

# parameter value
par <- c(1, 0.3)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

trueExp <- expectiles(par, tau)
trueExp


# tau-th expectile of the AR(1) with Student-t innovations
tsDist <- "studentT"
tsType <- "AR"

# Approximation via Monte Carlo methods
trueMethod <- "approx"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.99

trueExp <- expectiles(par, tau, tsDist, tsType, trueMethod)
trueExp


Multidimensional Value-at-Risk (VaR) or Extreme Quantile (EQ) Estimation

Description

Computes point estimates and (1-\alpha)100\% confidence regions for d-dimensional VaR based on the Weissman estimator.

Usage

extMultiQuantile(data, tau, tau1, var=FALSE, varType="asym-Ind-Log", bias=FALSE,
                 k=NULL, alpha=0.05, plot=FALSE)

Arguments

data

A matrix of (n \times d) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

tau1

A real in (0,1) specifying the extreme level \tau'_n. See Details.

var

If var=TRUE then an estimate of the asymptotic variance-covariance matrix of the d-dimensional VaR estimator is computed.

varType

A string specifying the type of asymptotic variance-covariance matrix to compute. By default varType="asym-Ind-Log" specifies that the variance-covariance matrix is obtained assuming dependent variables and exploiting the logarithmic scale. See Details.

bias

A logical value. By default biast=FALSE specifies that no bias correction is computed. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence region for the d-dimensional VaR.

plot

A logical value. By default plot=FALSE specifies that no graphical representation of the estimates is not provided. See Details.

Details

For a dataset data of d-dimensional observations and sample size n, the VaR or EQ, correspoding to the extreme level tau1, is computed by applying the d-dimensional Weissman estimator. The definition of the Weissman estimator depends on the estimation of the d-dimensional tail index \gamma. Here, \gamma is estimated using the Hill estimation (see MultiHTailIndex). The data are regarded as d-dimensional temporal independent observations coming from dependent variables. See Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.

See Also

MultiHTailIndex, estMultiExpectiles, predMultiExpectiles

Examples

# Extreme quantile estimation at the extreme level tau1 obtained with
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved quantile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# High d-dimensional expectile (intermediate level) estimation
extQHat <- extMultiQuantile(data, tau, tau1, TRUE)

extQHat$ExtQHat
extQHat$VarCovExQHat
# run the following command to see the graphical representation

 extQHat <- extMultiQuantile(data, tau, tau1, TRUE, plot=TRUE)


Value-at-Risk (VaR) or Extreme Quantile (EQ) Estimation

Description

Computes a point and interval estimate of the VaR based on the Weissman estimator.

Usage

extQuantile(data, tau, tau1, var=FALSE, varType="asym-Dep", bias=FALSE, bigBlock=NULL,
            smallBlock=NULL, k=NULL, alpha=0.05)

Arguments

data

A vector of (1 \times n) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

tau1

A real in (0,1) specifying the extreme level \tau'_n. See Details.

var

If var=TRUE then an estimate of the asymptotic variance of the VaR estimator is computed.

varType

A string specifying the type of asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for serial dependent observations. See Details.

bias

A logical value. By default biast=FALSE specifies that no bias correction is computed. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the VaR.

Details

For a dataset data of sample size n, the VaR or EQ, correspoding to the extreme level tau1, is computed by applying the Weissman estimator. The definition of the Weissman estimator depends on the estimation of the tail index \gamma. Here, \gamma is estimated using the Hill estimation (see HTailIndex). The observations can be either independent or temporal dependent (see e.g. de Haan and Ferreira 2006; Drees 2003; de Haan et al. 2016 for details).

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer-Verlag, New York.

Drees, H. (2000). Weighted approximations of tail processes for \beta-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance. Bernoulli, 9, 617-657.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random sequences and processes. Springer.

See Also

HTailIndex, EBTailIndex, estExpectiles

Examples

# Extreme quantile estimation at the level tau1 obtained with 1-dimensional data
# simulated from an AR(1) with univariate Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.97
# Extreme level (or tail probability 1-tau1 of unobserved quantile)
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# VaR (extreme quantile) estimation
extQHat1 <- extQuantile(data, tau, tau1, TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
extQHat1$ExtQHat
extQHat1$CIExtQ

# VaR (extreme quantile) estimation with bias correction
extQHat2 <- extQuantile(data, tau, tau1, TRUE, bias=TRUE, bigBlock=bigBlock, smallBlock=smallBlock)
extQHat2$ExtQHat
extQHat2$CIExtQ

Extreme Expectile Estimation

Description

Computes a point and interval estimate of the expectile at the extreme level (Expectile Prediction).

Usage

predExpectiles(data, tau, tau1, method="LAWS", tailest="Hill", var=FALSE,
               varType="asym-Dep", bias=FALSE, bigBlock=NULL, smallBlock=NULL,
               k=NULL, alpha_n=NULL, alpha=0.05)

Arguments

data

A vector of (1 \times n) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

tau1

A real in (0,1) specifying the extreme level \tau'_n. See Details.

method

A string specifying the method used to estimate the expecile. By default est="LAWS" specifies the use of the LAWS based estimator. See Details.

tailest

A string specifying the tail index estimator. By default tailest="Hill" specifies the use of Hill estimator. See Details.

var

If var=TRUE then an estimate of the asymptotic variance of the expectile estimator is computed.

varType

A string specifying the type of asymptotic variance to compute. By default varType="asym-Dep" specifies the variance estimator for serial dependent observations. See Details.

bias

A logical value. By default bias=FALSE specifies that no bias correction is computed. See Details.

bigBlock

An interger specifying the size of the big-block used to estimaste the asymptotic variance. See Details.

smallBlock

An interger specifying the size of the small-block used to estimaste the asymptotic variance. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha_n

A real in (0,1) specifying the quantile's extreme level to be use in order to estimate the expectile's extreme level.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence interval for the expecile at the intermedite level.

Details

For a dataset data of sample size n, an estimate of the \tau'_n-th expectile is computed. The estimation of the expectile at the extreme level tau1 (\tau'_n) is meant to be a prediction beyond the observed sample. Two estimators are available: the so-called Least Asymmetrically Weighted Squares (LAWS) based estimator and the Quantile-Based (QB) estimator. The definition of both estimators depends on the estimation of the tail index \gamma. Here, \gamma is estimated using the Hill estimation (see HTailIndex for details) or in alternative using the the expectile based estimator (see EBTailIndex). The observations can be either independent or temporal dependent. See Section 3.2 in Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

Daouia, A., Girard, S. and Stupfler, G. (2018). Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society: Series B, 80, 263-292.

de Haan, L., Mercadier, C. and Zhou, C. (2016). Adapting extreme value statistics to nancial time series: dealing with bias and serial dependence. Finance and Stochastics, 20, 321-354.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance. Bernoulli, 9, 617-657.

Drees, H. (2000). Weighted approximations of tail processes for \beta-mixing random variables. Annals of Applied Probability, 10, 1274-1301.

Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1989). Extremes and related properties of random sequences and processes. Springer.

See Also

HTailIndex, EBTailIndex, estExpectiles, extQuantile

Examples

# Extreme expectile estimation at the extreme level tau1 obtained with
# 1-dimensional data simulated from an AR(1) with univariate
# Student-t distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# Big- small-blocks setting
bigBlock <- 65
smallBlock <- 15

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# Extreme expectile estimation
expectHat1 <- predExpectiles(data, tau, tau1, var=TRUE, bigBlock=bigBlock,
	                         smallBlock=smallBlock)
expectHat1$EExpcHat
expectHat1$CIExpct
# Extreme expectile estimation with bias correction
tau <- 0.80
expectHat2 <- predExpectiles(data, tau, tau1, "QB", var=TRUE, bias=TRUE, bigBlock=bigBlock,
							 smallBlock=smallBlock)
expectHat2$EExpcHat
expectHat2$CIExpct

Multidimensional Extreme Expectile Estimation

Description

Computes point estimates and (1-\alpha)100\% confidence regions for d-dimensional expectile at the extreme level (Expectile Prediction).

Usage

predMultiExpectiles(data, tau, tau1, method="LAWS", tailest="Hill", var=FALSE,
                    varType="asym-Ind-Adj-Log", bias=FALSE, k=NULL, alpha=0.05,
                    plot=FALSE)

Arguments

data

A matrix of (n \times d) observations.

tau

A real in (0,1) specifying the intermediate level \tau_n. See Details.

tau1

A real in (0,1) specifying the extreme level \tau'_n. See Details.

method

A string specifying the method used to estimate the expecile. By default est="LAWS" specifies the use of the LAWS based estimator. See Details.

tailest

A string specifying the tail index estimator. By default tailest="Hill" specifies the use of Hill estimator. See Details.

var

If var=TRUE then an estimate of the asymptotic variance of the expectile estimator is computed.

varType

A string specifying the type of asymptotic variance-covariance matrix to compute. By default varType="asym-Ind-Adj-Log" specifies that the variance-covariance matrix is computed assuming dependent variables and exploiting the log scale and a suitable adjustment. See Details.

bias

A logical value. By default bias=FALSE specifies that no bias correction is computed. See Details.

k

An integer specifying the value of the intermediate sequence k_n. See Details.

alpha

A real in (0,1) specifying the confidence level (1-\alpha)100\% of the approximate confidence region for the d-dimensional expecile at the extreme level.

plot

A logical value. By default plot=FALSE specifies that no graphical representation of the estimates is provided. See Details.

Details

For a dataset data of d-dimensional observations and sample size n, an estimate of the \tau'_n-th d-dimensional expectile is computed. The estimation of the d-dimensional expectile at the extreme level tau1 (\tau'_n) is meant to be a prediction beyond the observed sample. Two estimators are available: the so-called Least Asymmetrically Weighted Squares (LAWS) based estimator and the Quantile-Based (QB) estimator. The definition of both estimators depends on the estimation of the d-dimensional tail index \gamma. Here, \gamma is estimated using the Hill estimation (see MultiHTailIndex for details). The data are regarded as d-dimensional temporal independent observations coming from dependent variables. See Padoan and Stupfler (2020) for details.

Value

A list with elements:

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

MultiHTailIndex, estMultiExpectiles, extMultiQuantile

Examples

# Extreme expectile estimation at the extreme level tau1 obtained with
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved expectile)
tau1 <- 0.9995

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

# High d-dimensional expectile (intermediate level) estimation
expectHat <- predMultiExpectiles(data, tau, tau1, var=TRUE)

expectHat$ExpctHat
expectHat$VarCovEHat
# run the following command to see the graphical representation

 expectHat <- predMultiExpectiles(data, tau, tau1, var=TRUE, plot=TRUE)


Simulation of Two-Dimensional Temporally Dependent Observations

Description

Simulates samples from parametric families of bivariate time series models.

Usage

rbtimeseries(ndata, dist="studentT", type="AR", copula="Gumbel", par, burnin=1e+03)

Arguments

ndata

A positive interger specifying the number of observations to simulate.

dist

A string specifying the parametric family of the innovations distribution. By default dist="studentT" specifies a Student-t family of distributions. See Details.

type

A string specifying the type of time series. By default type="AR" specifies a linear Auto-Regressive time series. See Details.

copula

A string specifying the type copula to be used. By default copula="Gumbel" specifies the Gumbel copula. See Details.

par

A list of p parameters to be specified for the bivariate time series parametric family. See Details.

burnin

A positive interger specifying the number of initial observations to discard from the simulated sample.

Details

For a time series class (type), with a parametric family (dist) for the innovations, a sample of size ndata is simulated. See for example Brockwell and Davis (2016).

Value

A vector of (2 \times n) observations simulated from a specified bivariate time series model.

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Brockwell, Peter J., and Richard A. Davis. (2016). Introduction to time series and forecasting. Springer.

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

See Also

rtimeseries, expectiles

Examples

# Data simulation from a 2-dimensional AR(1) with bivariate Student-t distributed
# innovations, with one marginal distribution whose lower and upper tail indices
# that are different

tsDist <- "AStudentT"
tsType <- "AR"
tsCopula <- "studentT"

# parameter setting
corr <- 0.8
dep <- 0.8
df <- 3
par <- list(corr=corr, dep=dep, df=df)

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rbtimeseries(ndata, tsDist, tsType, tsCopula, par)

# Extreme expectile estimation
plot(data, pch=21)
plot(data[,1], type="l")
plot(data[,2], type="l")

Simulation of d-Dimensional Temporally Independent Observations

Description

Simulates samples of independent d-dimensional observations from parametric families of joint distributions with a given copula and equal marginal distributions.

Usage

rmdata (ndata, dist="studentT", copula="studentT", par)

Arguments

ndata

A positive interger specifying the number of observations to simulate.

dist

A string specifying the parametric family of equal marginal distributions. By default dist="studentT" specifies a Student-t family of distributions. See Details.

copula

A string specifying the type copula to be used. By default copula="studentT" specifies the Student-t copula. See Details.

par

A list of p parameters to be specified for the multivariate parametric family of distributions. See Details.

Details

For a joint multivariate distribution with a given parametric copula class (copula) and a given parametric family of equal marginal distributions (dist), a sample of size ndata is simulated.

Value

A matrix of (n \times d) observations simulated from a specified multivariate parametric joint distribution.

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall/CRC Press, Boca Raton, USA.

Simone A. Padoan and Gilles Stupfler (2022). Joint inference on extreme expectiles for multivariate heavy-tailed distributions, Bernoulli 28(2), 1021-1048.

See Also

rtimeseries, rbtimeseries

Examples

library(plot3D)
library(copula)
library(evd)

# Data simulation from a 3-dimensional random vector a with multivariate distribution
# given by a Gumbel copula and three equal Frechet marginal distributions

# distributional setting
copula <- "Gumbel"
dist <- "Frechet"

# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Frechet
# marginal distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])


# Data simulation from a 3-dimensional random vector a with multivariate distribution
# given by a Gaussian copula and three equal Student-t marginal distributions

# distributional setting
dist <- "studentT"
copula <- "Gaussian"

# parameter setting
rho <- c(0.9, 0.8, 0.7)
sigma <- c(1, 1, 1)
Sigma <- sigma^2 * diag(dim)
Sigma[lower.tri(Sigma)] <- rho
Sigma <- t(Sigma)
Sigma[lower.tri(Sigma)] <- rho
df <- 3
par <- list(sigma=Sigma, df=df)

# sample size
ndata <- 1000

# Simulates a sample from a multivariate distribution with equal Student-t
# marginal distributions and a Gaussian copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])

Simulation of One-Dimensional Temporally Dependent Observations

Description

Simulates samples from parametric families of time series models.

Usage

rtimeseries(ndata, dist="studentT", type="AR", par, burnin=1e+03)

Arguments

ndata

A positive interger specifying the number of observations to simulate.

dist

A string specifying the parametric family of the innovations distribution. By default dist="studentT" specifies a Student-t family of distributions. See Details.

type

A string specifying the type of time series. By default type="AR" specifies a linear Auto-Regressive time series. See Details.

par

A vector of (1 \times p) parameters to be specified for the univariate time series parametric family. See Details.

burnin

A positive interger specifying the number of initial observations to discard from the simulated sample.

Details

For a time series class (type) with a parametric family (dist) for the innovations, a sample of size ndata is simulated. See for example Brockwell and Davis (2016).

Value

A vector of (1 \times n) observations simulated from a specified time series model.

Author(s)

Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@univ-angers.fr, https://math.univ-angers.fr/~stupfler/

References

Brockwell, Peter J., and Richard A. Davis. (2016). Introduction to time series and forecasting. Springer.

Anthony C. Davison, Simone A. Padoan and Gilles Stupfler (2023). Tail Risk Inference via Expectiles in Heavy-Tailed Time Series, Journal of Business & Economic Statistics, 41(3) 876-889.

See Also

expectiles

Examples

# Data simulation from a 1-dimensional AR(1) with univariate Student-t
# distributed innovations

tsDist <- "studentT"
tsType <- "AR"

# parameter setting
corr <- 0.8
df <- 3
par <- c(corr, df)

# sample size
ndata <- 2500

# Simulates a sample from an AR(1) model with Student-t innovations
data <- rtimeseries(ndata, tsDist, tsType, par)

# Graphic representation
plot(data, type="l")
acf(data)


Negative log-returns of S&P 500.

Description

Series of negative log-returns of the U.S. stock market index Standard and Poor 500.

Format

A 8784*2 data frame.

Details

From the series of n = 8785 closing prices S_{t}, t=1,2,..., for the Standard and Poor 500 stock market index, recorded from January 29, 1985 to December 12, 2019, the series of negative log-returns.

X_{t+1} = - \log(S_{t+1}/S_t), \quad 1\leq t\leq n-1

is available. Hence the dataset (negative log-returns) contains 8784 observations.