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conv_funct Conversion Functions for Elliptical Distributions

Description

An elliptical random vector X of density |det(Σ)|−1/2gd(x
′Σ−1x) can always be written as X =

µ + R ∗ A ∗ U for some positive random variable R and a random vector U on the d-dimensional
sphere. Furthermore, there is a one-to-one mapping between g_d and its one-dimensional marginal
g_1.

Usage

Convert_gd_To_g1(grid, g_d, d)

Convert_g1_To_Fg1(grid, g_1)

Convert_g1_To_Qg1(grid, g_1)

Convert_g1_To_f1(grid, g_1)

Convert_gd_To_fR2(grid, g_d, d)

Arguments

grid the grid on which the values of the functions in parameter are given.

g_d the d-dimensional density generator.

d the dimension of the random vector.

g_1 the 1-dimensional density generator.
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Value

One of the following

• g_1 the 1-dimensional density generator.

• Fg1 the 1-dimensional marginal cumulative distribution function.

• Qg1 the 1-dimensional marginal quantile function (approximately equal to the inverse function
of Fg1).

• f1 the density of a 1-dimensional margin if µ = 0 and A is the identity matrix.

• fR2 the density function of R2.

The function Convert_gd_To_g1 returns a numerical vector of (approximated) values of g_1 on the
same grid as gd. In all other cases, a function is returned (see the examples section).

See Also

DensityGenerator.normalize to compute the normalized version of a given d-dimensional gen-
erator.

Examples

grid = seq(0,100,by = 0.01)
g_d = DensityGenerator.normalize(grid = grid, grid_g = 1/(1+grid^3), d = 3)
g_1 = Convert_gd_To_g1(grid = grid, g_d = g_d, d = 3)
Fg_1 = Convert_g1_To_Fg1(grid = grid, g_1 = g_1)
Qg_1 = Convert_g1_To_Qg1(grid = grid, g_1 = g_1)
f1 = Convert_g1_To_f1(grid = grid, g_1 = g_1)
fR2 = Convert_gd_To_fR2(grid = grid, g_d = g_d, d = 3)
plot(grid, g_d, type = "l", xlim = c(0,10))
plot(grid, g_1, type = "l", xlim = c(0,10))
plot(Fg_1, xlim = c(-3,3))
plot(Qg_1, xlim = c(0.01,0.99))
plot(f1, xlim = c(-3,3))
plot(fR2, xlim = c(0,3))

DensityGenerator.normalize

Normalization of an elliptical copula generator

Description

The function DensityGenerator.normalize transforms an elliptical copula generator into an el-
liptical copula generator,generating the same distribution and which is normalized to follow the
normalization constraint

πd/2

Γ(d/2)

∫ +∞

0

gk(t)t
(d−2)/2dt = 1.
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as well as the identification constraint

π(d−1)/2

Γ((d− 1)/2)

∫ +∞

0

gk(t)t
(d−3)/2dt = b.

The function DensityGenerator.check checks, for a given generator, whether these two con-
straints are satisfied.

Usage

DensityGenerator.normalize(grid, grid_g, d, verbose = 0, b = 1)

DensityGenerator.check(grid, grid_g, d, b = 1)

Arguments

grid the regularly spaced grid on which the values of the generator are given.

grid_g the values of the d-dimensional generator at points of the grid.

d the dimension of the space.

verbose if 1, prints the estimated (alpha, beta) such that new_g(t) = alpha * old_g(beta*t).

b the target value for the identification constraint.

Value

DensityGenerator.normalize returns the normalized generator, as a list of values on the same
grid.

DensityGenerator.check returns (invisibly) a vector of two booleans where the first element is
TRUE if the normalization constraint is satisfied and the second element is TRUE if the identification
constraint is satisfied.

References

Derumigny, A., & Fermanian, J. D. (2022). Identifiability and estimation of meta-elliptical copula
generators. Journal of Multivariate Analysis, article 104962. doi:10.1016/j.jmva.2022.104962.

See Also

EllCopSim() for the simulation of elliptical copula samples, EllCopEst() for the estimation of
elliptical copula, conversion functions for the conversion between different representation of the
generator of an elliptical copula.

https://doi.org/10.1016/j.jmva.2022.104962
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EllCopEst Estimate the density generator of a (meta-)elliptical copula

Description

This function estimates the density generator of a (meta-)elliptical copula using the iterative proce-
dure described in (Derumigny and Fermanian, 2022). This iterative procedure consists in alternating
a step of estimating the data via Liebscher’s procedure EllDistrEst() and estimating the quantile
function of the underlying elliptical distribution to transform the data back to the unit cube.

Usage

EllCopEst(
dataU,
Sigma_m1,
h,
grid = seq(0, 10, by = 0.01),
niter = 10,
a = 1,
Kernel = "epanechnikov",
verbose = 1,
startPoint = "identity",
prenormalization = FALSE

)

Arguments

dataU the data matrix on the [0, 1] scale.

Sigma_m1 the inverse of the correlation matrix of the components of data

h bandwidth of the kernel for Liebscher’s procedure

grid the grid at which the density generator is estimated.

niter the number of iterations

a tuning parameter to improve the performance at 0. See Liebscher (2005), Ex-
ample p.210

Kernel kernel used for the smoothing. Possible choices are gaussian, epanechnikov
and triangular.

verbose if 1, prints the progress of the iterations. If 2, prints the normalization constants
used at each iteration, as computed by DensityGenerator.normalize.

startPoint is the given starting point of the procedure

• startPoint = "gaussian" for using the gaussian generator as starting point
;

• startPoint = "identity" for a data-driven starting point ;
• startPoint = "A~Phi^{-1}" for another data-driven starting point using

the Gaussian quantile function.



6 EllCopEst

prenormalization

if TRUE, the procedure will normalize the variables at each iteration so that the
variance is 1.

Value

a list of two elements:

• g_d_norm: the estimated elliptical copula generator at each point of the grid;

• list_path_gdh: the list of estimated elliptical copula generator at each iteration.

References

Derumigny, A., & Fermanian, J. D. (2022). Identifiability and estimation of meta-elliptical copula
generators. Journal of Multivariate Analysis, article 104962. doi:10.1016/j.jmva.2022.104962.

Liebscher, E. (2005). A semiparametric density estimator based on elliptical distributions. Journal
of Multivariate Analysis, 92(1), 205. doi:10.1016/j.jmva.2003.09.007

See Also

EllDistrEst for the estimation of elliptical distributions, EllCopSim for the simulation of elliptical
copula samples, EllCopLikelihood for the computation of the likelihood of a given generator,
DensityGenerator.normalize to compute the normalized version of a given generator.

Examples

# Simulation from a Gaussian copula
grid = seq(0,10,by = 0.01)
g_d = DensityGenerator.normalize(grid, grid_g = exp(-grid), d = 3)
n = 10
# To have a nice estimation, we suggest to use rather n=200
# (around 20s of computation time)
U = EllCopSim(n = n, d = 3, grid = grid, g_d = g_d)
result = EllCopEst(dataU = U, grid, Sigma_m1 = diag(3),

h = 0.1, a = 0.5)
plot(grid, g_d, type = "l", xlim = c(0,2))
lines(grid, result$g_d_norm, col = "red", xlim = c(0,2))

# Adding missing observations
n_NA = 2
U_NA = U
for (i in 1:n_NA){

U_NA[sample.int(n,1), sample.int(3,1)] = NA
}
resultNA = EllCopEst(dataU = U_NA, grid, Sigma_m1 = diag(3),

h = 0.1, a = 0.5)
lines(grid, resultNA$g_d_norm, col = "blue", xlim = c(0,2))

https://doi.org/10.1016/j.jmva.2022.104962
https://doi.org/10.1016/j.jmva.2003.09.007
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EllCopLikelihood Computation of the likelihood of an elliptical copula

Description

Computes the likelihood
g(Qg(U)Σ−1Qg(U))

fg(Qg(U1)) · · · fg(Qg(Ud))

for a vector (U1, . . . , Ud) on the unit cube and for a d-dimensional generator g whose univariate
density and quantile functions are respectively fg and Qg . This is to the likelihood of the copula
associated with the elliptical distribution having density |det(Σ)|−1/2g(xΣ−1x).

Usage

EllCopLikelihood(grid, g_d, pointsToCompute, Sigma_m1, log = TRUE)

Arguments

grid the discretization grid on which the generator is given.

g_d the values of the d-dimensional density generator on the grid.

pointsToCompute

the points U at which the likelihood should be computed. If pointsToCompute
is a vector, then its length is used as the dimension d of the space. If it is a
matrix, then the dimension of the space is the number of columns.

Sigma_m1 the inverse correlation matrix of the elliptical distribution.

log if TRUE, this returns the log-likelihood instead of the likelihood.

Value

a vector (of length 1 if pointsToCompute is a vector) of likelihoods associated with each observa-
tion.

References

Derumigny, A., & Fermanian, J. D. (2022). Identifiability and estimation of meta-elliptical copula
generators. Journal of Multivariate Analysis, article 104962. doi:10.1016/j.jmva.2022.104962.

See Also

EllCopEst for the estimation of elliptical copula, EllCopEst for the estimation of elliptical copula.

https://doi.org/10.1016/j.jmva.2022.104962
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Examples

grid = seq(0,50,by = 0.01)
gdnorm = DensityGenerator.normalize(grid = grid, grid_g = exp(-grid/2), d = 3)
gdnorm2 = DensityGenerator.normalize(grid = grid, grid_g = 1/(1+grid^2), d = 3)
X = EllCopSim(n = 30, d = 3, grid = grid, g_d = gdnorm)
logLik = EllCopLikelihood(grid , g_d = gdnorm , X,

Sigma_m1 = diag(3), log = TRUE)
logLik2 = EllCopLikelihood(grid , g_d = gdnorm2 , X,

Sigma_m1 = diag(3), log = TRUE)
print(c(sum(logLik), sum(logLik2)))

EllCopSim Simulation from an elliptical copula model

Description

Simulation from an elliptical copula model

Usage

EllCopSim(n, d, grid, g_d, A = diag(d), genR = list(method = "pinv"))

Arguments

n number of observations.

d dimension of X.

grid grid on which values of density generator are known.

g_d vector of values of the density generator on the grid.

A square-root of the correlation matrix of X.

genR additional arguments for the generation of the squared radius. It must be a list
with a component method:

• If genR$method == "pinv", the radius is generated using the function Runuran::pinv.new().
• If genR$method == "MH", the generation is done using the Metropolis-Hasting

algorithm, with a N(0,1) move at each step.

Value

a matrix of size (n,d) with n observations of the d-dimensional elliptical copula.

References

Derumigny, A., & Fermanian, J. D. (2022). Identifiability and estimation of meta-elliptical copula
generators. Journal of Multivariate Analysis, article 104962. doi:10.1016/j.jmva.2022.104962.

https://doi.org/10.1016/j.jmva.2022.104962
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See Also

EllDistrSim for the simulation of elliptical distributions samples, EllCopEst for the estimation
of elliptical copula, EllCopLikelihood for the computation of the likelihood of a given generator,
DensityGenerator.normalize to compute the normalized version of a given generator.

Examples

# Simulation from a Gaussian copula
grid = seq(0,5,by = 0.01)
X = EllCopSim(n = 20, d = 2, grid = grid, g_d = exp(-grid/2))
X = EllCopSim(n = 20, d = 2, grid = grid, g_d = exp(-grid/2),

genR = list(method = "MH", niter = 500) )
plot(X)

EllDistrDerivEst Estimate the derivatives of a generator

Description

A continuous elliptical distribution has a density of the form

fX(x) = |Σ|−1/2
g
(
(x− µ)⊤ Σ−1 (x− µ)

)
,

where x ∈ Rd, µ ∈ Rd is the mean, Σ is a d× d positive-definite matrix and a function g : R+ →
R+, called the density generator of X . The goal is to estimate the derivatives of g at some point ξ,
by kernel smoothing, following Section 3 of (Ryan and Derumigny, 2024).

Usage

EllDistrDerivEst(
X,
mu = 0,
Sigma_m1 = diag(NCOL(X)),
grid,
h,
Kernel = "gaussian",
a = 1,
k,
mpfr = FALSE,
precBits = 100,
dopb = TRUE

)
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Arguments

X a matrix of size n × d, assumed to be n i.i.d. observations (rows) of a d-
dimensional elliptical distribution.

mu mean of X. This can be the true value or an estimate. It must be a vector of
dimension d.

Sigma_m1 inverse of the covariance matrix of X. This can be the true value or an estimate.
It must be a matrix of dimension d× d.

grid grid of values on which to estimate the density generator.
h bandwidth of the kernel. Can be either a number or a vector of the size length(grid).
Kernel name of the kernel. Possible choices are "gaussian", "epanechnikov", "triangular".
a tuning parameter to improve the performance at 0.
k highest order of the derivative of the generator that is to be estimated. For exam-

ple, k = 1 corresponds to the estimation of the generator and of its derivative. k
= 2 corresponds to the estimation of the generator as well as its first and second
derivatives.

mpfr if mpfr = TRUE, multiple precision floating point is used via the package Rmpfr.
This allows for a higher (numerical) accuracy, at the expense of computing time.
It is recommended to use this option for higher dimensions.

precBits number of precBits used for floating point precision (only used if mpfr = TRUE).
dopb a Boolean value. If dopb = TRUE, a progress bar is displayed.

Details

Note that this function may be rather slow for higher-order derivatives. Furthermore, it is likely that
the number of observations needs to be quite high for the higher-order derivatives to be estimated
well enough.

Value

a matrix of size length(grid) * (kmax + 1) with the estimated value of the generator and all its
derivatives at all orders until and including kmax, at all points of the grid.

Author(s)

Alexis Derumigny, Victor Ryan

Victor Ryan, Alexis Derumigny

References

Ryan, V., & Derumigny, A. (2024). On the choice of the two tuning parameters for nonparametric
estimation of an elliptical distribution generator arxiv:2408.17087.

See Also

EllDistrEst for the nonparametric estimation of the elliptical distribution density generator itself,
EllDistrSim for the simulation of elliptical distribution samples.

This function uses the internal functions compute_etahat and compute_matrix_alpha.

https://arxiv.org/abs/2408.17087
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Examples

# Comparison between the estimated and true generator of the Gaussian distribution
n = 50000
d = 3
X = matrix(rnorm(n * d), ncol = d)
grid = seq(0, 5, by = 0.1)
a = 1.5

gprimeEst = EllDistrDerivEst(X = X, grid = grid, a = a, h = 0.09, k = 1)[,2]
plot(grid, gprimeEst, type = "l")

# Computation of true values
g = exp(-grid/2)/(2*pi)^{3/2}
gprime = (-1/2) * exp(-grid/2)/(2*pi)^{3/2}

lines(grid, gprime, col = "red")

EllDistrEst Nonparametric estimation of the density generator of an elliptical dis-
tribution

Description

This function uses Liebscher’s algorithm to estimate the density generator of an elliptical distribu-
tion by kernel smoothing. A continuous elliptical distribution has a density of the form

fX(x) = |Σ|−1/2
g
(
(x− µ)⊤ Σ−1 (x− µ)

)
,

where x ∈ Rd, µ ∈ Rd is the mean, Σ is a d× d positive-definite matrix and a function g : R+ →
R+, called the density generator of X . The goal is to estimate g at some point ξ, by

ĝn,h,a(ξ) :=
ξ

−d+2
2 ψ′

a(ξ)

nhsd

n∑
i=1

K

(
ψa(ξ)− ψa(ξi)

h

)
+K

(
ψa(ξ) + ψa(ξi)

h

)
,

where sd := πd/2/Γ(d/2), Γ is the Gamma function, h and a are tuning parameters (respectively
the bandwidth and a parameter controlling the bias at ξ = 0), ψa(ξ) := −a + (ad/2 + ξd/2)2/d,
ξ ∈ R, K is a kernel function and ξi := (Xi − µ)⊤ Σ−1 (Xi − µ), for a sample X1, . . . , Xn.

Usage

EllDistrEst(
X,
mu = 0,
Sigma_m1 = diag(d),
grid,
h,
Kernel = "epanechnikov",
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a = 1,
mpfr = FALSE,
precBits = 100,
dopb = TRUE

)

Arguments

X a matrix of size n × d, assumed to be n i.i.d. observations (rows) of a d-
dimensional elliptical distribution.

mu mean of X. This can be the true value or an estimate. It must be a vector of
dimension d.

Sigma_m1 inverse of the covariance matrix of X. This can be the true value or an estimate.
It must be a matrix of dimension d× d.

grid grid of values of ξ at which we want to estimate the density generator.

h bandwidth of the kernel. Can be either a number or a vector of the size length(grid).

Kernel name of the kernel. Possible choices are "gaussian", "epanechnikov", "triangular".

a tuning parameter to improve the performance at 0. Can be either a number or
a vector of the size length(grid). If this is a vector, the code will need to
allocate a matrix of size nrow(X) * length(grid) which can be prohibitive in
some cases.

mpfr if mpfr = TRUE, multiple precision floating point is used via the package Rmpfr.
This allows for a higher (numerical) accuracy, at the expense of computing time.
It is recommended to use this option for higher dimensions.

precBits number of precBits used for floating point precision (only used if mpfr = TRUE).

dopb a Boolean value. If dopb = TRUE, a progress bar is displayed.

Value

the values of the density generator of the elliptical copula, estimated at each point of the grid.

Author(s)

Alexis Derumigny, Rutger van der Spek

References

Liebscher, E. (2005). A semiparametric density estimator based on elliptical distributions. Journal
of Multivariate Analysis, 92(1), 205. doi:10.1016/j.jmva.2003.09.007

The function ψa is introduced in Liebscher (2005), Example p.210.

See Also

• EllDistrSim for the simulation of elliptical distribution samples.

• estim_tilde_AMSE for the estimation of a component of the asymptotic mean-square error
(AMSE) of this estimator ĝn,h,a(ξ), assuming h has been optimally chosen.

https://doi.org/10.1016/j.jmva.2003.09.007
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• EllDistrEst.adapt for the adaptive nonparametric estimation of the generator of an ellipti-
cal distribution.

• EllDistrDerivEst for the nonparametric estimation of the derivatives of the generator.

• EllCopEst for the estimation of elliptical copulas density generators.

Examples

# Comparison between the estimated and true generator of the Gaussian distribution
X = matrix(rnorm(500*3), ncol = 3)
grid = seq(0,5,by=0.1)
g_3 = EllDistrEst(X = X, grid = grid, a = 0.7, h=0.05)
g_3mpfr = EllDistrEst(X = X, grid = grid, a = 0.7, h=0.05,

mpfr = TRUE, precBits = 20)
plot(grid, g_3, type = "l")
lines(grid, exp(-grid/2)/(2*pi)^{3/2}, col = "red")

# In higher dimensions

d = 250
X = matrix(rnorm(500*d), ncol = d)
grid = seq(0, 400, by = 25)
true_g = exp(-grid/2) / (2*pi)^{d/2}

g_d = EllDistrEst(X = X, grid = grid, a = 100, h=40)

g_dmpfr = EllDistrEst(X = X, grid = grid, a = 100, h=40,
mpfr = TRUE, precBits = 10000)

ylim = c(min(c(true_g, as.numeric(g_dmpfr[which(g_dmpfr>0)]))),
max(c(true_g, as.numeric(g_dmpfr)), na.rm=TRUE) )

plot(grid, g_dmpfr, type = "l", col = "red", ylim = ylim, log = "y")
lines(grid, g_d, type = "l")
lines(grid, true_g, col = "blue")

EllDistrEst.adapt Estimation of the generator of the elliptical distribution by kernel
smoothing with adaptive choice of the bandwidth

Description

A continuous elliptical distribution has a density of the form

fX(x) = |Σ|−1/2
g
(
(x− µ)⊤ Σ−1 (x− µ)

)
,

where x ∈ Rd, µ ∈ Rd is the mean, Σ is a d× d positive-definite matrix and a function g : R+ →
R+, called the density generator of X . The goal is to estimate g at some point ξ, by

ĝn,h,a(ξ) :=
ξ

−d+2
2 ψ′

a(ξ)

nhsd

n∑
i=1

K

(
ψa(ξ)− ψa(ξi)

h

)
+K

(
ψa(ξ) + ψa(ξi)

h

)
,
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where sd := πd/2/Γ(d/2), Γ is the Gamma function, h and a are tuning parameters (respectively
the bandwidth and a parameter controlling the bias at ξ = 0), ψa(ξ) := −a + (ad/2 + ξd/2)2/d,
ξ ∈ R, K is a kernel function and ξi := (Xi − µ)⊤ Σ−1 (Xi − µ), for a sample X1, . . . , Xn.
This function computes "optimal asymptotic" values for the bandwidth h and the tuning parameter
a from a first step bandwidth that the user needs to provide.

Usage

EllDistrEst.adapt(
X,
mu = 0,
Sigma_m1 = diag(NCOL(X)),
grid,
h_firstStep,
grid_a = NULL,
Kernel = "gaussian",
mpfr = FALSE,
precBits = 100,
dopb = TRUE

)

Arguments

X a matrix of size n × d, assumed to be n i.i.d. observations (rows) of a d-
dimensional elliptical distribution.

mu mean of X. This can be the true value or an estimate. It must be a vector of
dimension d.

Sigma_m1 inverse of the covariance matrix of X. This can be the true value or an estimate.
It must be a matrix of dimension d× d.

grid vector containing the values at which we want the generator to be estimated.

h_firstStep a vector of size 2 containing first-step bandwidths to be used. The first one is
used for the estimation of the asymptotic mean-squared error. The second one
is used for the first step estimation of g. From these two estimators, a final value
of the bandwidth h is determined, which is used for the final estimator of g.

If h_firstStep is of length 1, its value is reused for both purposes (estimation
of the AMSE and first-step estimation of g).

grid_a the grid of possible values of a to be used. If missing, a default sequence is used.

Kernel name of the kernel. Possible choices are "gaussian", "epanechnikov", "triangular".

mpfr if mpfr = TRUE, multiple precision floating point is used via the package Rmpfr.
This allows for a higher (numerical) accuracy, at the expense of computing time.
It is recommended to use this option for higher dimensions.

precBits number of precBits used for floating point precision (only used if mpfr = TRUE).

dopb a Boolean value. If dopb = TRUE, a progress bar is displayed.
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Value

a list with the following elements:

• g a vector of size n1 = length(grid). Each component of this vector is an estimator of g(x[i])
where x[i] is the i-th element of the grid.

• best_a a vector of the same size as grid indicating for each value of the grid what is the
optimal choice of a found by our algorithm (which is used to estimate g).

• best_h a vector of the same size as grid indicating for each value of the grid what is the
optimal choice of h found by our algorithm (which is used to estimate g).

• first_step_g first step estimator of g, computed using the tuning parameters best_a and
h_firstStep[2].

• AMSE_estimated an estimator of the part of the asymptotic MSE that only depends on a.

Author(s)

Alexis Derumigny, Victor Ryan

References

Ryan, V., & Derumigny, A. (2024). On the choice of the two tuning parameters for nonparametric
estimation of an elliptical distribution generator arxiv:2408.17087.

See Also

EllDistrEst for the nonparametric estimation of the elliptical distribution density generator, EllDistrSim
for the simulation of elliptical distribution samples.

estim_tilde_AMSE which is used in this function. It estimates a component of the asymptotic
mean-square error (AMSE) of the nonparametric estimator of the elliptical density generator as-
suming h has been optimally chosen.

Examples

n = 500
d = 3
X = matrix(rnorm(n * d), ncol = d)
grid = seq(0, 5, by = 0.1)

result = EllDistrEst.adapt(X = X, grid = grid, h = 0.05)
plot(grid, result$g, type = "l")
lines(grid, result$first_step_g, col = "blue")

# Computation of true values
g = exp(-grid/2)/(2*pi)^{3/2}
lines(grid, g, type = "l", col = "red")

plot(grid, result$best_a, type = "l", col = "red")
plot(grid, result$best_h, type = "l", col = "red")

sum((g - result$g)^2, na.rm = TRUE) < sum((g - result$first_step_g)^2, na.rm = TRUE)

https://arxiv.org/abs/2408.17087
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EllDistrSim Simulation of elliptically symmetric random vectors

Description

This function uses the decompositionX = µ+R∗A∗U where µ is the mean ofX ,R is the random
radius, A is the square-root of the covariance matrix of X , and U is a uniform random variable of
the d-dimensional unit sphere. Note that R is generated using the Metropolis-Hasting algorithm.

Usage

EllDistrSim(
n,
d,
A = diag(d),
mu = 0,
density_R2,
genR = list(method = "pinv")

)

Arguments

n number of observations.
d dimension of X .
A square-root of the covariance matrix of X .
mu mean of X . It should be a vector of size d.
density_R2 density of the random variable R2, i.e. the density of the ||X||22 if µ = 0 and A

is the identity matrix.
Note that this function must return 0 for negative inputs, otherwise negative
values ofR2 may be generated. The simplest way to do this is to add * (x > 0)
at the end of the return value of the provided density_R2 function (see example
below).

genR additional arguments for the generation of the squared radius. It must be a list
with a component method:

• If genR$method == "pinv", the radius is generated using the function Runuran::pinv.new().
• If genR$method == "MH", the generation is done using the Metropolis-Hasting

algorithm, with a N(0, 1) move at each step.

Value

a matrix of dimensions (n,d) of simulated observations.

See Also

EllCopSim for the simulation of elliptical copula samples, EllCopEst for the estimation of elliptical
distributions, EllDistrSimCond for the conditional simulation of elliptically distributed random
vectors given some observe components.
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Examples

# Sample from a 3-dimensional normal distribution
X = EllDistrSim(n = 200, d = 3, density_R2 = function(x){stats::dchisq(x=x,df=3)})
plot(X[,1], X[,2])
X = EllDistrSim(n = 200, d = 3, density_R2 = function(x){stats::dchisq(x=x,df=3)},

genR = list(method = "MH", niter = 500))
plot(X[,1], X[,2])

# Sample from an Elliptical distribution for which the squared radius
# follows an exponential distribution
cov1 = rbind(c(1,0.5), c(0.5,1))
X = EllDistrSim(n = 1000, d = 2,

A = chol(cov1), mu = c(2,6),
density_R2 = function(x){return(exp(-x) * (x > 0))} )

EllDistrSimCond Simulation of elliptically symmetric random vectors conditionally to
some observed part.

Description

Simulation of elliptically symmetric random vectors conditionally to some observed part.

Usage

EllDistrSimCond(
n,
xobs,
d,
Sigma = diag(d),
mu = 0,
density_R2_,
genR = list(method = "pinv")

)

Arguments

n number of observations to be simulated from the conditional distribution.

xobs observed value of X that we condition on. NA represent unknown components of
the vectors to be simulated.

d dimension of the random vector

Sigma (unconditional) covariance matrix

mu (unconditional) mean

density_R2_ (unconditional) density of the squared radius.
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genR additional arguments for the generation of the squared radius. It must be a list
with a component method:

• If genR$method == "pinv", the radius is generated using the function Runuran::pinv.new().
• If genR$method == "MH", the generation is done using the Metropolis-Hasting

algorithm, with a N(0,1) move at each step.

Value

a matrix of size (n,d) of simulated observations.

References

Cambanis, S., Huang, S., & Simons, G. (1981). On the Theory of Elliptically Contoured Distribu-
tions, Journal of Multivariate Analysis. (Corollary 5, p.376)

See Also

EllDistrSim for the (unconditional) simulation of elliptically distributed random vectors.

Examples

d = 3
Sigma = rbind(c(1, 0.8, 0.9),

c(0.8, 1, 0.7),
c(0.9, 0.7, 1))

mu = c(0, 0, 0)
result = EllDistrSimCond(n = 100, xobs = c(NA, 2, NA), d = d,

Sigma = Sigma, mu = mu, density_R2_ = function(x){stats::dchisq(x=x,df=3)})
plot(result)

result2 = EllDistrSimCond(n = 1000, xobs = c(1.3, 2, NA), d = d,
Sigma = Sigma, mu = mu, density_R2_ = function(x){stats::dchisq(x=x,df=3)})

hist(result2)

estim_tilde_AMSE Estimate the part of the AMSE of the elliptical density generator that
only depends on the parameter "a" assuming h has been optimally
chosen

Description

A continuous elliptical distribution has a density of the form

fX(x) = |Σ|−1/2
g
(
(x− µ)⊤ Σ−1 (x− µ)

)
,
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where x ∈ Rd, µ ∈ Rd is the mean, Σ is a d× d positive-definite matrix and a function g : R+ →
R+, called the density generator of X . The goal is to estimate g at some point ξ, by

ĝn,h,a(ξ) :=
ξ

−d+2
2 ψ′

a(ξ)

nhsd

n∑
i=1

K

(
ψa(ξ)− ψa(ξi)

h

)
+K

(
ψa(ξ) + ψa(ξi)

h

)
,

where sd := πd/2/Γ(d/2), Γ is the Gamma function, h and a are tuning parameters (respectively
the bandwidth and a parameter controlling the bias at ξ = 0), ψa(ξ) := −a + (ad/2 + ξd/2)2/d,
ξ ∈ R,K is a kernel function and ξi := (Xi−µ)⊤ Σ−1 (Xi−µ), for a sampleX1, . . . , Xn. Thanks
to Proposition 2.2 in (Ryan and Derumigny, 2024), the asymptotic mean square error of ĝn,h,a(ξ)
can be decomposed into a product of a constant (that depends on the true g) and a term that depends
on g and a. This function computes this term. It can be useful to find out the best value of the
parameter a to be used.

Usage

estim_tilde_AMSE(
X,
mu = 0,
Sigma_m1 = diag(NCOL(X)),
grid,
h,
Kernel = "gaussian",
a = 1,
mpfr = FALSE,
precBits = 100,
dopb = TRUE

)

Arguments

X a matrix of size n × d, assumed to be n i.i.d. observations (rows) of a d-
dimensional elliptical distribution.

mu mean of X. This can be the true value or an estimate. It must be a vector of
dimension d.

Sigma_m1 inverse of the covariance matrix of X. This can be the true value or an estimate.
It must be a matrix of dimension d× d.

grid grid of values of ξ at which we want to estimate the density generator.

h bandwidth of the kernel. Can be either a number or a vector of the size length(grid).

Kernel name of the kernel. Possible choices are "gaussian", "epanechnikov", "triangular".

a tuning parameter to improve the performance at 0. Can be either a number or
a vector of the size length(grid). If this is a vector, the code will need to
allocate a matrix of size nrow(X) * length(grid) which can be prohibitive in
some cases.

mpfr if mpfr = TRUE, multiple precision floating point is used via the package Rmpfr.
This allows for a higher (numerical) accuracy, at the expense of computing time.
It is recommended to use this option for higher dimensions.
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precBits number of precBits used for floating point precision (only used if mpfr = TRUE).

dopb a Boolean value. If dopb = TRUE, a progress bar is displayed.

Value

a vector of the same size as the grid, with the corresponding value for the ÃMSE.

Author(s)

Alexis Derumigny, Victor Ryan

References

Ryan, V., & Derumigny, A. (2024). On the choice of the two tuning parameters for nonparametric
estimation of an elliptical distribution generator arxiv:2408.17087.

Examples

# Comparison between the estimated and true generator of the Gaussian distribution
n = 50000
d = 3
X = matrix(rnorm(n * d), ncol = d)
grid = seq(0, 5, by = 0.1)
a = 1.5

AMSE_est = estim_tilde_AMSE(X = X, grid = grid, a = a, h = 0.09)
plot(grid, abs(AMSE_est), type = "l")

# Computation of true values
g = exp(-grid/2)/(2*pi)^{3/2}
gprime = (-1/2) *exp(-grid/2)/(2*pi)^{3/2}
A = a^(d/2)
psia = -a + (A + grid^(d/2))^(2/d)
psiaprime = grid^(d/2 - 1) * (A + grid^(d/2))^(2/d - 1)
psiasecond = psiaprime * ( (d-2)/2 ) * grid^{-1} * A *

( grid^(d/2) + A )^(-1)

rhoprimexi = ((d-2) * grid^((d-4)/2) * psiaprime
- 2 * grid^((d-2)/2) * psiasecond) / (2 * psiaprime^3) * g +
grid^((d-2)/2) / (psiaprime^2) * gprime

AMSE = rhoprimexi / psiaprime

lines(grid, abs(AMSE), col = "red")

# Comparison as a function of $a$
n = 50000
d = 3
X = matrix(rnorm(n * d), ncol = d)
grid = 0.1
vec_a = c(0.001, 0.002, 0.005,

https://arxiv.org/abs/2408.17087
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0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 1.5, 2)

AMSE_est = rep(NA, length = length(vec_a))
for (i in 1:length(vec_a)){

AMSE_est[i] = estim_tilde_AMSE(X = X, grid = grid, a = vec_a[i], h = 0.09,
dopb = FALSE)

}

plot(vec_a, abs(AMSE_est), type = "l", log = "x")

# Computation of true values
a = vec_a

g = exp(-grid/2)/(2*pi)^{3/2}
gprime = (-1/2) *exp(-grid/2)/(2*pi)^{3/2}
A = a^(d/2)
psia = -a + (A + grid^(d/2))^(2/d)
psiaprime = grid^(d/2 - 1) * (A + grid^(d/2))^(2/d - 1)
psiasecond = psiaprime * ( (d-2)/2 ) * grid^{-1} * A *

( grid^(d/2) + A )^(-1)

rhoprimexi = ((d-2) * grid^((d-4)/2) * psiaprime
- 2 * grid^((d-2)/2) * psiasecond) / (2 * psiaprime^3) * g +
grid^((d-2)/2) / (psiaprime^2) * gprime

AMSE = rhoprimexi / psiaprime

yliminf = min(c(abs(AMSE_est), abs(AMSE)))
ylimsup = max(c(abs(AMSE_est), abs(AMSE)))

plot(vec_a, abs(AMSE_est), type = "l", log = "xy",
ylim = c(yliminf, ylimsup))

lines(vec_a, abs(AMSE), col = "red")

KTMatrixEst Fast estimation of Kendall’s tau matrix

Description

Estimate Kendall’s tau matrix using averaging estimators. Under the structural assumption that
Kendall’s tau matrix is block-structured with constant values in each off-diagonal block, this func-
tion estimates Kendall’s tau matrix “fast”, in the sense that each interblock coefficient is estimated
in time N · n · log(n), where N is the amount of pairs that are averaged.

Usage

KTMatrixEst(dataMatrix, blockStructure = NULL, averaging = "no", N = NULL)
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Arguments

dataMatrix matrix of size (n,d) containing n observations of a d-dimensional random vec-
tor.

blockStructure list of vectors. Each vector corresponds to one group of variables and contains
the indexes of the variables that belongs to this group. blockStructure must
be a partition of 1:d, where d is the number of columns in dataMatrix.

averaging type of averaging used for fast estimation. Possible choices are

• no: no averaging;
• all: averaging all Kendall’s taus in each block. N is then the number of

entries in the block, i.e. the products of both dimensions.
• diag: averaging along diagonal blocks elements. N is then the minimum of

the block’s dimensions.
• row: averaging Kendall’s tau along the smallest block side. N is then the

minimum of the block’s dimensions.
• random: averaging Kendall’s taus along a random sample of N entries of the

given block. These entries are chosen uniformly without replacement.

N number of entries to average (n the random case. By default, N is then the mini-
mum of the block’s dimensions.

Value

matrix with dimensions depending on averaging.

• If averaging = no, the function returns a matrix of dimension (n,n) which estimates the
Kendall’s tau matrix.

• Else, the function returns a matrix of dimension (length(blockStructure) , length(blockStructure))
giving the estimates of the Kendall’s tau for each block with ones on the diagonal.

Author(s)

Rutger van der Spek, Alexis Derumigny

References

van der Spek, R., & Derumigny, A. (2022). Fast estimation of Kendall’s Tau and conditional
Kendall’s Tau matrices under structural assumptions. arxiv:2204.03285.

Examples

# Estimating off-diagonal block Kendall's taus
matrixCor = matrix(c(1 , 0.5, 0.3 ,0.3, 0.3,

0.5, 1, 0.3, 0.3, 0.3,
0.3, 0.3, 1, 0.5, 0.5,
0.3, 0.3, 0.5, 1, 0.5,
0.3, 0.3, 0.5, 0.5, 1), ncol = 5 , nrow = 5)

dataMatrix = mvtnorm::rmvnorm(n = 100, mean = rep(0, times = 5), sigma = matrixCor)
blockStructure = list(1:2, 3:5)
estKTMatrix = list()

https://arxiv.org/abs/2204.03285
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estKTMatrix$all = KTMatrixEst(dataMatrix = dataMatrix,
blockStructure = blockStructure,
averaging = "all")

estKTMatrix$row = KTMatrixEst(dataMatrix = dataMatrix,
blockStructure = blockStructure,
averaging = "row")

estKTMatrix$diag = KTMatrixEst(dataMatrix = dataMatrix,
blockStructure = blockStructure,
averaging = "diag")

estKTMatrix$random = KTMatrixEst(dataMatrix = dataMatrix,
blockStructure = blockStructure,
averaging = "random", N = 2)

InterBlockCor = lapply(estKTMatrix, FUN = function(x) {sin(x[1,2] * pi / 2)})

# Estimation of the correlation between variables of the first group
# and of the second group
print(unlist(InterBlockCor))
# to be compared with the true value: 0.3.

TEllDistrEst Estimation of trans-elliptical distributions

Description

This function estimates the parameters of a trans-elliptical distribution which is a distribution whose
copula is (meta-)elliptical, with arbitrary margins, using the procedure proposed in (Derumigny &
Fermanian, 2022).

Usage

TEllDistrEst(
X, estimatorCDF = function(x){
force(x)
return( function(y){(stats::ecdf(x)(y) - 1/(2*length(x))) }) },

h, verbose = 1, grid, ...)

Arguments

X the matrix of observations of the variables

estimatorCDF the way of estimating the marginal cumulative distribution functions. It should
be either a function that takes in parameter a vector of observations and returns
an estimated cdf (i.e. a function) or a list of such functions to be applied on
the data. In this case, it is required that the length of the list should be the
same as the number of columns of X. It is required that the functions returned by
estimatorCDF should have values in the open interval (0, 1).

h bandwidth for the non-parametric estimation of the density generator.
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verbose if 1, prints the progress of the iterations. If 2, prints the normalizations constants
used at each iteration, as computed by DensityGenerator.normalize.

grid grid of values on which to estimate the density generator

... other parameters to be passed to EllCopEst.

Value

This function returns a list with three components:

• listEstCDF: a list of estimated marginal CDF given by estimatorCDF;

• corMatrix: the estimated correlation matrix:

• estEllCopGen: the estimated generator of the meta-elliptical copula.

References

Derumigny, A., & Fermanian, J. D. (2022). Identifiability and estimation of meta-elliptical copula
generators. Journal of Multivariate Analysis, article 104962. doi:10.1016/j.jmva.2022.104962.

Examples

cor = matrix(c(1, 0.5, 0.2,
0.5, 1, 0.8,
0.2, 0.8, 1), byrow = TRUE, nrow = 3)

grid = seq(0,10,by = 0.01)
g_d = DensityGenerator.normalize(grid, grid_g = exp(-grid), d = 3)
n = 10
# To have a nice estimation, we suggest to use rather n=200
# (around 20s of computation time)
U = EllCopSim(n = n, d = 3, grid = grid, g_d = g_d, A = chol(cor))
X = matrix(nrow = n, ncol = 3)
X[,1] = stats::qnorm(U[,1], mean = 2)
X[,2] = stats::qt(U[,2], df = 5)
X[,3] = stats::qt(U[,3], df = 8)

result = TEllDistrEst(X, h = 0.1, grid = grid)
plot(grid, g_d, type = "l", xlim = c(0,2))
lines(grid, result$estiEllCop$g_d_norm, col = "red")
print(result$corMatrix)

# Adding missing observations
n_NA = 2
X_NA = X
for (i in 1:n_NA){

X_NA[sample.int(n,1), sample.int(3,1)] = NA
}
resultNA = TEllDistrEst(X_NA, h = 0.1, grid = grid, verbose = 1)
lines(grid, resultNA$estiEllCopGen, col = "blue")

https://doi.org/10.1016/j.jmva.2022.104962
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vectorized_Faa_di_Bruno

Vectorized version of Faa di Bruno formula

Description

This code implements a vectorized version of the Faa di Bruno formula, relying internally on the
Bell polynomials from the package kStatistics, via the function kStatistics::eBellPol.

Usage

vectorized_Faa_di_Bruno(f, g, x, k, args_f, args_g)

Arguments

f, g two functions that take in argument

• a vector x of numeric values
• an integer k which is as to be understood as the order of the derivative of f
• potentially other parameters (not vectorized)

x vector of (one-dimensional) values at which the k-th order derivatives is to be
evaluated.

k the order of the derivative

args_f, args_g the list of additional parameters to be passed on to f and g. This must be the
same for all values of x.

Value

a vector of size length(x) for which the i-th component is (f ◦ g)(k)(x[i])

Author(s)

Alexis Derumigny, Victor Ryan

See Also

compute_matrix_alpha which also uses the Bell polynomials in a similar way.

Examples

g <- function(x, k, a){
if (k == 0){ return ( exp(x) + a)
} else {
return (exp(x))

}
}
args_g = list(a = 2)
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f <- function(x, k, a){
if (k == 0){ return ( x^2 + a)
} else if (k == 1) {
return ( 2 * x)

} else if (k == 2) {
return ( 2 )

} else {
return ( 0 )

}
}
args_f = list(a = 5)

x = 1:5
vectorized_Faa_di_Bruno(f = f, g = g, x = x, k = 1,

args_f = args_f, args_g = args_g)
# Derivative of ( exp(x) + 2 )^2 + 5
# which explicit expression is:
2 * exp(x) * ( exp(x) + 2 )



Index

∗ Kendall correlation coefficient
KTMatrixEst, 21

compute_etahat, 10
compute_matrix_alpha, 10, 25
conv_funct, 2
conversion functions, 4
Convert_g1_To_f1 (conv_funct), 2
Convert_g1_To_Fg1 (conv_funct), 2
Convert_g1_To_Qg1 (conv_funct), 2
Convert_gd_To_fR2 (conv_funct), 2
Convert_gd_To_g1 (conv_funct), 2

DensityGenerator.check
(DensityGenerator.normalize), 3

DensityGenerator.normalize, 3, 3, 5, 6, 9,
24

EllCopEst, 5, 7, 9, 13, 16, 24
EllCopEst(), 4
EllCopLikelihood, 6, 7, 9
EllCopSim, 6, 8, 16
EllCopSim(), 4
EllDistrDerivEst, 9, 13
EllDistrEst, 6, 10, 11, 15
EllDistrEst(), 5
EllDistrEst.adapt, 13, 13
EllDistrSim, 9, 10, 12, 15, 16, 18
EllDistrSimCond, 16, 17
estim_tilde_AMSE, 12, 15, 18

kStatistics::eBellPol, 25
KTMatrixEst, 21

Rmpfr, 10, 12, 14, 19
Runuran::pinv.new(), 8, 16, 18

TEllDistrEst, 23

vectorized_Faa_di_Bruno, 25

27


	conv_funct
	DensityGenerator.normalize
	EllCopEst
	EllCopLikelihood
	EllCopSim
	EllDistrDerivEst
	EllDistrEst
	EllDistrEst.adapt
	EllDistrSim
	EllDistrSimCond
	estim_tilde_AMSE
	KTMatrixEst
	TEllDistrEst
	vectorized_Faa_di_Bruno
	Index

