Package 'DtD'

July 21, 2025

July 21, 2020
Type Package
Title Distance to Default
Version 0.2.2
Maintainer Benjamin Christoffersen
Description Provides fast methods to work with Merton's distance to default model introduced in Merton (1974) <doi:10.1111 j.1540-6261.1974.tb03058.x="">. The methods includes simulation and estimation of the parameters.</doi:10.1111>
License GPL-2
Encoding UTF-8
BugReports https://github.com/boennecd/DtD/issues
LazyData true
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp, checkmate
Suggests knitr, rmarkdown, testthat, microbenchmark
VignetteBuilder knitr
RoxygenNote 7.0.1
SystemRequirements C++11
NeedsCompilation yes
Author Benjamin Christoffersen [cre, aut], R-core [cph], Robert Gentleman [cph], Ross Ihaka [cph]
Repository CRAN
Date/Publication 2020-02-11 08:30:02 UTC
Contents
BS_call

2 BS_call

Index	merton_ll	 •	 	•	•	•	•	 •	•	•	•	 	•	•	•		•	•	•	•	 •	•	•	•	•	•	 •	9
	BS_fit_rol BS_sim		 									 																6

BS_call

European Call Option Price and the Inverse

Description

Computes the European call option and the inverse. All vectors with length greater than one needs to have the same length.

Usage

```
BS_call(V, D, T., r, vol)
get_underlying(S, D, T., r, vol, tol = 1e-12)
```

Arguments

V numeric vector or scalar with price of the underlying ass	V	numeric vector or	scalar with	price of the	underlying ass
---	---	-------------------	-------------	--------------	----------------

D numeric vector or scalar with debt due in T...

T. numeric vector or scalar with time to maturity.

r numeric vector or scalar with risk free rates.

vol numeric vector or scalar with volatilities, σ s.

S numeric vector with observed stock prices.

numeric scalar with tolerance to get_underlying. The difference is scaled if the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.

Value

Numeric vector or scalar with price of the underlying asset or equity price.

See Also

```
BS_fit
```

Examples

```
library(DtD)
set.seed(58661382)
sims <- BS_sim(
   vol = .2, mu = .03, dt = .1, V_0 = 100, T. = 1, D = rep(80, 20), r = .01)
stopifnot(with(</pre>
```

BS_fit 3

```
sims, isTRUE(all.equal(V, get_underlying(S, D, T, r, vol))))
stopifnot(with(
  sims, isTRUE(all.equal(S, BS_call(V, D, T, r, vol)))))
```

BS_fit

Fit Black-Scholes Parameters

Description

Function to estimate the volatility, σ , and drift, μ . See vignette("Distance-to-default", package = "DtD") for details. All vectors with length greater than one needs to have the same length. The Nelder-Mead method from optim is used when method = "mle". Either time or dt should be passed.

Usage

```
BS_fit(
    S,
    D,
    T.,
    r,
    time,
    dt,
    vol_start,
    method = c("iterative", "mle"),
    tol = 1e-12,
    eps = 1e-08
)
```

Arguments

S	numeric vector with observed stock prices.
D	numeric vector or scalar with debt due in T
Т.	numeric vector or scalar with time to maturity.
r	numeric vector or scalar with risk free rates.
time	numeric vector with the observation times.
dt	numeric scalar with time increments between observations.
vol_start	numeric scalar with starting value for σ .
method	string to specify which estimation method to use.
tol	numeric scalar with tolerance to <pre>get_underlying</pre> . The difference is scaled if the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.
eps	numeric scalar with convergence threshold.

4 BS_fit_rolling

Value

A list with the following components

ests estimates of σ , and drift, μ .

n_iter number of iterations when method = "iterative" and number of log likelihood

evaluations when method = "mle".

success logical for whether the estimation method converged.

Warning

Choosing tol >= eps or roughly equal may make the method alternate between two solutions for some data sets.

Examples

```
library(DtD)
set.seed(83486778)
sims <- BS_sim(
   vol = .1, mu = .05, dt = .1, V_0 = 100, T. = 1, D = rep(80, 20), r = .01)
with(sims,
        BS_fit(S = S, D = D, T. = T, r = r, time = time, method = "mle"))</pre>
```

BS_fit_rolling

Fit Black-Scholes Parameters Over Rolling Window

Description

Function to estimate the volatility, σ , and drift, μ . E.g., the window can be over a given number of months. See vignette("Distance-to-default", package = "DtD") for details.

Usage

```
BS_fit_rolling(
   S,
   D,
   T.,
   r,
   time,
   dt,
   vol_start,
   method = c("iterative", "mle"),
   tol = 1e-12,
   eps = 1e-08,
   grp,
   width,
   min_obs
)
```

BS_fit_rolling 5

Arguments

S	numeric vector with observed stock prices.
D	numeric vector or scalar with debt due in T
T.	numeric vector or scalar with time to maturity.
r	numeric vector or scalar with risk free rates.
time	numeric vector with the observation times.
dt	numeric scalar with time increments between observations.
vol_start	numeric scalar with starting value for σ .
method	string to specify which estimation method to use.
tol	numeric scalar with tolerance to <pre>get_underlying</pre> . The difference is scaled if the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.
eps	numeric scalar with convergence threshold.
grp	integer vector with the group identifier (e.g., units of months).
width	integer scalar with the units of grp to include in the rolling window.
min_obs	integer scalar for the minimum number of observation required in each window.

Value

Matrix with the grp, number of observation in the window, parameter estimates, and 'n_iter' as in BS_fit, and whether the estimation method was successful.

An error attribute is added in case other code than optim fails. It is a list of lists with the grp index where the method failed and the output from try.

See Also

BS_fit

Examples

```
# Simulate data
set.seed(55770945)
n <- 21L * 3L * 12L # 21 trading days for 3 years w/ 12 months
sims <- BS_sim(
   vol = .1, mu = .05, dt = .1, V_0 = 100, T. = 1,
   D = runif(n, 80, 90), r = runif(n, 0, .01))
sims$month <- (1:nrow(sims) - 1L) %/% 21L + 1L

# throw out some months
sims <- subset(sims, !month %in% 15:24)

# assign parameters
grp <- sims$month
width <- 12L  # window w/ 12 month width
min_obs <- 21L * 3L # require 3 months of data

# estimate results with R loop which is slightly simpler then the</pre>
```

BS_sim

```
# implementation
grps <- unique(grp)</pre>
out <- matrix(</pre>
  NA_real_, nrow = length(grps), ncol = 6,
  dimnames = list(NULL, c("mu", "vol", "n_iter", "success", "n_obs", "grp")))
for(g in grps){
  idx <- which(grps == g)</pre>
  keep <- which(grp %in% (g - width + 1L):g)</pre>
  out[idx, c("n_obs", "grp")] <- c(length(keep), g)</pre>
  if(length(keep) < min_obs)</pre>
    next
  res <- with(
    sims[keep, ],
    BS_fit(S = S, D = D, T. = T, r = r, time = time, method = "iterative",
           vol_start = 1))
  out[idx, c("mu", "vol", "n_iter", "success")] <- rep(</pre>
    do.call(c, res[c("ests", "n_iter", "success")]), each = length(idx))
}
# we get the same with the R function
out_func <- with(sims, BS_fit_rolling(</pre>
  S = S, D = D, T. = T, r = r, time = time, method = "iterative",
  grp = month, width = width, min_obs = min_obs))
all.equal(out[, names(out) != "n_iter"],
          out_func[, names(out_func) != "n_iter"])
```

BS_sim

Simulate Stock Price and Price of Underlying Asset

Description

At least one of D, r, or T. needs to have the desired length of the simulated series. All vectors with length greater than one needs to have the same length.

Usage

```
BS_sim(vol, mu, dt, V_0, D, r, T.)
```

Arguments

VOI	numeric scalar with σ value.
mu	numeric scalar with μ value.
dt	numeric scalar with time increments between observations.
V_0	numeric scalar with starting value of the underlying asset, S_0 .
D	numeric vector or scalar with debt due in T
r	numeric vector or scalar with risk free rates.
T.	numeric vector or scalar with time to maturity.

merton_ll 7

See Also

```
BS_fit
```

Examples

```
library(DtD)
set.seed(79156879)
sims <- BS_sim(
    vol = .1, mu = .05, dt = .2, V_0 = 100, T. = 1, D = rep(80, 20), r = .01)
# plot underlying
plot(sims$V)
# plot stock
plot(sims$S)</pre>
```

 $merton_11$

Compute Log-Likelihood of Merton Model

Description

Computes the log-likelihood for a given values of μ and σ .

Usage

```
merton_ll(S, D, T., r, time, dt, vol, mu, tol = 1e-12)
```

Arguments

S	numeric vector with observed stock prices.
D	numeric vector or scalar with debt due in T
Т.	numeric vector or scalar with time to maturity.
r	numeric vector or scalar with risk free rates.
time	numeric vector with the observation times.
dt	numeric scalar with time increments between observations.
vol	numeric scalar with the σ value.
mu	numeric scalar with the μ value.
tol	numeric scalar with tolerance to <pre>get_underlying</pre> . The difference is scaled if the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.

See Also

BS_fit

8 merton_ll

Examples

```
# we get the same if we call `optim` as follows. The former is faster and is
# recommended
set.seed(4648394)
sims <- BS_sim(</pre>
  vol = .1, mu = .05, dt = .1, V_0 = 100, T_0 = 1, D_0 = rep(80, 20), r = .01
r1 <- with(
  sims, BS_fit(S = S, D = D, T. = T, r = r, time = time, method = "mle",
               eps = 1e-8, vol_start = .2))
r2 <- optim(c(mu = 0, log_vol = log(.2)), function(par)
  -with(
    sims, merton_1(S = S, D = D, T. = T, r = r, time = time,
                    mu = par["mu"], vol = exp(par["log_vol"]))))
all.equal(r1$n_iter, unname(r2$counts[1]))
all.equal(r1$ests[1], r2$par[1])
all.equal(r1$ests[2], exp(r2$par[2]), check.attributes = FALSE)
# the log-likelihood integrates to one as it should though likely not the
# most stable way to test this
11 <- integrate(</pre>
  function(x) sapply(x, function(S)
    exp(merton_ll(
      S = c(1, S), D = .8, T. = 3, r = .01, dt = 1/250, vol = .2,
      mu = .05))),
  lower = 1e-4, upper = 6)
stopifnot(isTRUE(all.equal(ll$value, 1, tolerance = 1e-5)))
```

Index

```
all.equal.numeric, 2, 3, 5, 7

BS_call, 2
BS_fit, 2, 3, 5, 7
BS_fit_rolling, 4
BS_sim, 6

get_underlying, 2, 3, 5, 7
get_underlying (BS_call), 2

merton_ll, 7

optim, 3, 5

try, 5
```