Type: | Package |
Title: | Probability Distribution Functions |
Version: | 0.4.0 |
Date: | 2024-01-08 |
Description: | Calculates expected values, variance, different moments (kth moment, truncated mean), stop-loss, mean excess loss, Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) as well as some density and cumulative (survival) functions of continuous, discrete and compound distributions. This package also includes a visual 'Shiny' component to enable students to visualize distributions and understand the impact of their parameters. This package is intended to expand the 'stats' package so as to enable students to develop an intuition for probability. |
License: | MIT + file LICENSE |
URL: | https://alec42.github.io/Distributacalcul_Package/ |
BugReports: | https://github.com/alec42/Distributacalcul_Package/issues |
Encoding: | UTF-8 |
Imports: | statmod, stats, dplyr, rlang |
RoxygenNote: | 7.2.3 |
Suggests: | learnr, knitr, rmarkdown, spelling, testthat |
Language: | en-CA |
NeedsCompilation: | no |
Packaged: | 2024-01-09 14:54:53 UTC; alecjvanrassel |
Author: | Alec James van Rassel [aut, cre, cph], Gabriel Crépeault-Cauchon [aut, ccp], Étienne Marceau [tch, sad], Hélène Cossette [tch, sad], Laboratoire Act & Risk [fnd, sht], École d'actuariat de l'Université Laval [fnd, his, uvp], Natural Sciences and Engineering Research Council of Canada [fnd], Marc-André Devost [ccp] |
Maintainer: | Alec James van Rassel <alec.van-rassel.1@ulaval.ca> |
Repository: | CRAN |
Date/Publication: | 2024-01-10 14:03:16 UTC |
Distributacalcul: Probability Distribution Functions
Description
The Distributacalcul provides three general types of functions :
Functions related to continuous, discrete, and compound probability distributions.
Functions related to bivariate copulas.
Shiny applications for visualising these distributions and copulas.
Probability Distribution Functions
These include functions for calculating various moments, risk measures, and distribution functions.
Copula Functions
These include functions for calculating distribution functions and simulating observations from the copulas.
Author(s)
Maintainer: Alec James van Rassel alec.van-rassel.1@ulaval.ca [copyright holder]
Authors:
Gabriel Crépeault-Cauchon [conceptor]
Other contributors:
Étienne Marceau [teacher, scientific advisor]
Hélène Cossette [teacher, scientific advisor]
Laboratoire Act & Risk [funder, supporting host]
École d'actuariat de l'Université Laval [funder, host institution, university place]
Natural Sciences and Engineering Research Council of Canada [funder]
Marc-André Devost [conceptor]
See Also
Useful links:
Report bugs at https://github.com/alec42/Distributacalcul_Package/issues
Beta Distribution
Description
Beta distribution with shape parameters \alpha
and \beta
.
Usage
expValBeta(shape1, shape2)
varBeta(shape1, shape2)
kthMomentBeta(k, shape1, shape2)
expValLimBeta(d, shape1, shape2)
expValTruncBeta(d, shape1, shape2, less.than.d = TRUE)
stopLossBeta(d, shape1, shape2)
meanExcessBeta(d, shape1, shape2)
VatRBeta(kap, shape1, shape2)
TVatRBeta(kap, shape1, shape2)
mgfBeta(t, shape1, shape2, k0)
Arguments
shape1 |
shape parameter |
shape2 |
shape parameter |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
k0 |
point up to which to sum the distribution for the approximation. |
Details
The Beta distribution with shape parameters \alpha
and
\beta
has density:
f\left(x\right) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) %
\Gamma(\beta)} x^{\alpha - 1} (1 - x)^(\beta - 1)
for x \in [0, 1]
, \alpha, \beta > 0
.
Value
Function :
-
expValBeta
gives the expected value. -
varBeta
gives the variance. -
kthMomentBeta
gives the kth moment. -
expValLimBeta
gives the limited mean. -
expValTruncBeta
gives the truncated mean. -
stopLossBeta
gives the stop-loss. -
meanExcessBeta
gives the mean excess loss. -
VatRBeta
gives the Value-at-Risk. -
TVatRBeta
gives the Tail Value-at-Risk. -
mgfBeta
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRBeta is a wrapper for the qbeta
function from the stats package.
Examples
expValBeta(shape1 = 3, shape2 = 5)
varBeta(shape1 = 4, shape2 = 5)
kthMomentBeta(k = 3, shape1 = 4, shape2 = 5)
expValLimBeta(d = 0.3, shape1 = 4, shape2 = 5)
expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5)
# Values less than d
expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5, less.than.d = FALSE)
stopLossBeta(d = 0.3, shape1 = 4, shape2 = 5)
meanExcessBeta(d = .3, shape1 = 4, shape2 = 5)
VatRBeta(kap = .99, shape1 = 4, shape2 = 5)
TVatRBeta(kap = .99, shape1 = 4, shape2 = 5)
mgfBeta(t = 1, shape1 = 3, shape2 = 5, k0 = 1E2)
Compound Binomial Distribution
Description
Computes various risk measures (mean, variance, Value-at-Risk (VaR), and Tail Value-at-Risk (TVaR)) for the compound Binomial distribution.
Usage
pCompBinom(
x,
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
k0,
distr_severity = "Gamma"
)
expValCompBinom(
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
distr_severity = "Gamma"
)
varCompBinom(
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
distr_severity = "Gamma"
)
VatRCompBinom(
kap,
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
k0,
distr_severity = "Gamma"
)
TVatRCompBinom(
kap,
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
vark,
k0,
distr_severity = "Gamma"
)
Arguments
x |
vector of quantiles |
size |
Number of trials (0 or more). |
prob |
Probability of success in each trial. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k0 |
point up to which to sum the distribution for the approximation. |
distr_severity |
Choice of severity distribution.
|
kap |
probability. |
vark |
Value-at-Risk (VaR) calculated at the given probability kap. |
Details
The compound binomial distribution has density ....
Value
Function :
-
pCompBinom
gives the cumulative density function. -
expValCompBinom
gives the expected value. -
varCompBinom
gives the variance. -
TVatRCompBinom
gives the Tail Value-at-Risk. -
VatRCompBinom
gives the Value-at-Risk.
Returned values are approximations for the cumulative density function, TVaR, and VaR.
Examples
pCompBinom(x = 2, size = 1, prob = 0.2, shape = log(1000) - 0.405,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
expValCompBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2,
distr_severity = "Lognormale")
varCompBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2,
distr_severity = "Lognormale")
VatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = log(1000) - 0.405,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
vark_calc <- VatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
TVatRCompBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2,
vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
Compound Negative Binomial Distribution
Description
Computes various risk measures (mean, variance, Value-at-Risk (VatR), and Tail Value-at-Risk (TVatR)) for the compound Negative Binomial distribution.
Usage
pCompNBinom(
x,
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
k0,
distr_severity = "Gamma"
)
expValCompNBinom(
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
distr_severity = "Gamma"
)
varCompNBinom(
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
distr_severity = "Gamma"
)
VatRCompNBinom(
kap,
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
k0,
distr_severity = "Gamma"
)
TVatRCompNBinom(
kap,
vark,
size,
prob,
shape,
rate = 1/scale,
scale = 1/rate,
k0,
distr_severity = "Gamma"
)
Arguments
x |
vector of quantiles |
size |
Number of successful trials. |
prob |
Probability of success in each trial. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k0 |
point up to which to sum the distribution for the approximation. |
distr_severity |
Choice of severity distribution.
|
kap |
probability. |
vark |
Value-at-Risk (VaR) calculated at the given probability kap. |
Details
The compound negative binomial distribution has density ....
Value
Function :
-
pCompNBinom
gives the cumulative density function. -
expValCompNBinom
gives the expected value. -
varCompNBinom
gives the variance. -
TVatRCompNBinom
gives the Tail Value-at-Risk. -
VatRCompNBinom
gives the Value-at-Risk.
Returned values are approximations for the cumulative density function, TVatR, and VatR.
Examples
pCompNBinom(x = 2, size = 1, prob = 0.2, shape = log(1000) - 0.405,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
expValCompNBinom(size = 4, prob = 0.2, shape = 0, scale = 1,
distr_severity = "Lognormal")
varCompNBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2,
distr_severity = "Lognormale")
VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
vark_calc <- VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
TVatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2,
vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
Compound Poisson Distribution
Description
Computes various risk measures (mean, variance, Value-at-Risk (VaR), and Tail Value-at-Risk (TVaR)) for the compound Poisson distribution.
Usage
pCompPois(
x,
lambda,
shape,
rate = 1/scale,
scale = 1/rate,
k0,
distr_severity = "Gamma"
)
expValCompPois(
lambda,
shape,
rate = 1/scale,
scale = 1/rate,
distr_severity = "Gamma"
)
varCompPois(
lambda,
shape,
rate = 1/scale,
scale = 1/rate,
distr_severity = "Gamma"
)
VatRCompPois(
kap,
lambda,
shape,
rate = 1/scale,
scale = 1/rate,
k0,
distr_severity = "Gamma"
)
TVatRCompPois(
kap,
lambda,
shape,
rate = 1/scale,
scale = 1/rate,
vark,
k0,
distr_severity = "Gamma"
)
Arguments
x |
vector of quantiles |
lambda |
Rate parameter |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k0 |
point up to which to sum the distribution for the approximation. |
distr_severity |
Choice of severity distribution.
|
kap |
probability. |
vark |
Value-at-Risk (VaR) calculated at the given probability kap. |
Details
The compound Poisson distribution with parameters ... has density ....
Value
Function :
-
pCompPois
gives the cumulative density function. -
expValCompPois
gives the expected value. -
varCompPois
gives the variance. -
TVatRCompPois
gives the Tail Value-at-Risk. -
VatRCompPois
gives the Value-at-Risk.
Returned values are approximations for the cumulative density function, TVaR, and VaR.
Examples
pCompPois(x = 2, lambda = 2, shape = log(1000) - 0.405,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
expValCompPois(lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2,
distr_severity = "Lognormale")
varCompPois(lambda = 2, shape = log(1000) - 0.405, rate = 0.9^2,
distr_severity = "Lognormale")
VatRCompPois(kap = 0.9, lambda = 2, shape = log(1000) - 0.405,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
vark_calc <- VatRCompPois(kap = 0.9, lambda = 2, shape = 0.59,
rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
TVatRCompPois(kap = 0.9, lambda = 2, shape = 0.59, rate = 0.9^2,
vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
Hypergeometric Distribution
Description
Hypergeometric distribution where we have a sample of k balls from an urn containing N, of which m are white and n are black.
Usage
expValErl(N = n + m, m, n = N - m, k)
varErl(N = n + m, m, n = N - m, k)
Arguments
N |
Total number of balls (white and black) in the urn. |
m |
Number of white balls in the urn. |
n |
Number of black balls in the urn. Can specify n instead of N. |
k |
Number of balls drawn from the urn, k = 0, 1, ..., m + n. |
Details
The Hypergeometric distribution for N
total items of which
m
are of one type and n
of the other and from which
k
items are picked has probability mass function :
Pr(X = x) = \frac{\left(\frac{m}{k}\right)\left(\frac{n}{k - x}\right)}{\left(\frac{N}{k}\right)}
for x = 0, 1, \dots, \min(k, m)
.
Value
Function :
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
# With total balls specified
expValErl(N = 5, m = 2, k = 2)
# With number of each colour of balls specified
expValErl(m = 2, n = 3, k = 2)
# With total balls specified
varErl(N = 5, m = 2, k = 2)
# With number of each colour of balls specified
varErl(m = 2, n = 3, k = 2)
Exponential Distribution
Description
Exponential distribution with rate parameter \beta
.
Usage
expValExp(rate = 1/scale, scale = 1/rate)
varExp(rate = 1/scale, scale = 1/rate)
kthMomentExp(k, rate = 1/scale, scale = 1/rate)
expValLimExp(d, rate = 1/scale, scale = 1/rate)
expValTruncExp(d, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossExp(d, rate = 1/scale, scale = 1/rate)
meanExcessExp(d, rate = 1/scale, scale = 1/rate)
VatRExp(kap, rate = 1/scale, scale = 1/rate)
TVatRExp(kap, rate = 1/scale, scale = 1/rate)
mgfExp(t, rate = 1/scale, scale = 1/rate)
Arguments
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The Exponential distribution with rate parameter \beta
has density:
f\left(x\right) = \frac{1}{\beta}\textrm{e}^{-\beta x}
for x \in \mathcal{R}^+
, \beta > 0
.
Value
Function :
-
expValExp
gives the expected value. -
varExp
gives the variance. -
kthMomentExp
gives the kth moment. -
expValLimExp
gives the limited mean. -
expValTruncExp
gives the truncated mean. -
stopLossExp
gives the stop-loss. -
meanExcessExp
gives the mean excess loss. -
VatRExp
gives the Value-at-Risk. -
TVatRExp
gives the Tail Value-at-Risk. -
mgfExp
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRExp is a wrapper of the qexp
function from the stats package.
Examples
# With scale parameter
expValExp(scale = 4)
# With rate parameter
expValExp(rate = 0.25)
# With scale parameter
varExp(scale = 4)
# With rate parameter
varExp(rate = 0.25)
# With scale parameter
kthMomentExp(k = 2, scale = 4)
# With rate parameter
kthMomentExp(k = 2, rate = 0.25)
# With scale parameter
expValLimExp(d = 2, scale = 4)
# With rate parameter
expValLimExp(d = 2, rate = 0.25)
# With scale parameter
expValTruncExp(d = 2, scale = 4)
# With rate parameter, values greater than d
expValTruncExp(d = 2, rate = 0.25, less.than.d = FALSE)
# With scale parameter
stopLossExp(d = 2, scale = 4)
# With rate parameter
stopLossExp(d = 2, rate = 0.25)
# With scale parameter
meanExcessExp(d = 2, scale = 4)
# With rate parameter
meanExcessExp(d = 5, rate = 0.25)
# With scale parameter
VatRExp(kap = .99, scale = 4)
# With rate parameter
VatRExp(kap = .99, rate = 0.25)
# With scale parameter
TVatRExp(kap = .99, scale = 4)
# With rate parameter
TVatRExp(kap = .99, rate = 0.25)
mgfExp(t = 1, rate = 5)
Gamma Distribution
Description
Gamma distribution with shape parameter \alpha
and rate
parameter \beta
.
Usage
expValGamma(shape, rate = 1/scale, scale = 1/rate)
varGamma(shape, rate = 1/scale, scale = 1/rate)
kthMomentGamma(k, shape, rate = 1/scale, scale = 1/rate)
expValLimGamma(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncGamma(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossGamma(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessGamma(d, shape, rate = 1/scale, scale = 1/rate)
VatRGamma(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRGamma(kap, shape, rate = 1/scale, scale = 1/rate)
mgfGamma(t, shape, rate = 1/scale, scale = 1/rate)
Arguments
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The Gamma distribution with shape parameter \alpha
and rate
parameter \beta
has density:
f\left(x\right) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1}%
\textrm{e}^{-\beta x}
for x \in \mathcal{R}^+
, \beta, \alpha > 0
.
Value
Function :
-
expValGamma
gives the expected value. -
varGamma
gives the variance. -
kthMomentGamma
gives the kth moment. -
expValLimGamma
gives the limited mean. -
expValTruncGamma
gives the truncated mean. -
stopLossGamma
gives the stop-loss. -
meanExcessGamma
gives the mean excess loss. -
VatRGamma
gives the Value-at-Risk. -
TVatRGamma
gives the Tail Value-at-Risk. -
mgfGamma
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRGamma is a wrapper for the qgamma
function stats package.
Examples
# With scale parameter
expValGamma(shape = 3, scale = 4)
# With rate parameter
expValGamma(shape = 3, rate = 0.25)
# With scale parameter
varGamma(shape = 3, scale = 4)
# With rate parameter
varGamma(shape = 3, rate = 0.25)
# With scale parameter
kthMomentGamma(k = 2, shape = 3, scale = 4)
# With rate parameter
kthMomentGamma(k = 2, shape = 3, rate = 0.25)
# With scale parameter
expValLimGamma(d = 2, shape = 3, scale = 4)
# With rate parameter
expValLimGamma(d = 2, shape = 3, rate = 0.25)
# With scale parameter
expValTruncGamma(d = 2, shape = 3, scale = 4)
# With rate parameter
expValTruncGamma(d = 2, shape = 3, rate = 0.25)
# values greather than d
expValTruncGamma(d = 2, shape = 3, rate = 0.25, less.than.d = FALSE)
# With scale parameter
stopLossGamma(d = 2, shape = 3, scale = 4)
# With rate parameter
stopLossGamma(d = 2, shape = 3, rate = 0.25)
# With scale parameter
meanExcessGamma(d = 2, shape = 3, scale = 4)
# With rate parameter
meanExcessGamma(d = 2, shape = 3, rate = 0.25)
# With scale parameter
VatRGamma(kap = .2, shape = 3, scale = 4)
# With rate parameter
VatRGamma(kap = .2, shape = 3, rate = 0.25)
# With scale parameter
TVatRGamma(kap = .2, shape = 3, scale = 4)
# With rate parameter
TVatRGamma(kap = .2, shape = 3, rate = 0.25)
mgfGamma(t = 1, shape = 3, rate = 5)
Inverse Gaussian Distribution
Description
Inverse Gaussian distribution with mean \mu
and shape parameter
\beta
.
Usage
expValIG(mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
varIG(mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
expValLimIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
expValTruncIG(
d,
mean,
shape = dispersion * mean^2,
dispersion = shape/mean^2,
less.than.d = TRUE
)
stopLossIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
meanExcessIG(d, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
VatRIG(kap, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
TVatRIG(kap, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
mgfIG(t, mean, shape = dispersion * mean^2, dispersion = shape/mean^2)
Arguments
mean |
mean (location) parameter |
shape |
shape parameter |
dispersion |
alternative parameterization to the shape parameter, dispersion = 1 / rate. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The Inverse Gaussian distribution with
Value
Function :
-
expValIG
gives the expected value. -
varIG
gives the variance. -
expValLimIG
gives the limited mean. -
expValTruncIG
gives the truncated mean. -
stopLossIG
gives the stop-loss. -
meanExcessIG
gives the mean excess loss. -
VatRIG
gives the Value-at-Risk. -
TVatRIG
gives the Tail Value-at-Risk. -
mgfIG
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRIG is a wrapper for the qinvgauss
function from the statmod package.
Examples
expValIG(mean = 2, shape = 5)
varIG(mean = 2, shape = 5)
expValLimIG(d = 2, mean = 2, shape = 5)
expValTruncIG(d = 2, mean = 2, shape = 5)
stopLossIG(d = 2, mean = 2, shape = 5)
meanExcessIG(d = 2, mean = 2, shape = 5)
VatRIG(kap = 0.99, mean = 2, shape = 5)
TVatRIG(kap = 0.99, mean = 2, shape = 5)
mgfIG(t = 1, mean = 2, shape = .5)
Lognormal Distribution
Description
Lognormal distribution with mean \mu
and variance \sigma
.
Usage
expValLnorm(meanlog, sdlog)
varLnorm(meanlog, sdlog)
kthMomentLnorm(k, meanlog, sdlog)
expValLimLnorm(d, meanlog, sdlog)
expValTruncLnorm(d, meanlog, sdlog, less.than.d = TRUE)
stopLossLnorm(d, meanlog, sdlog)
meanExcessLnorm(d, meanlog, sdlog)
VatRLnorm(kap, meanlog, sdlog)
TVatRLnorm(kap, meanlog, sdlog)
Arguments
meanlog |
location parameter |
sdlog |
standard deviation |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
Details
The Log-normal distribution with mean \mu
and standard deviation
\sigma
has density:
\frac{1}{\sqrt{2\pi}\sigma x}\textrm{e}^{-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2}
for x \in \mathcal{R}^{+}
, \mu \in \mathcal{R}, \sigma > 0
.
Value
Function :
-
expValLnorm
gives the expected value. -
varLnorm
gives the variance. -
kthMomentLnorm
gives the kth moment. -
expValLimLnorm
gives the limited mean. -
expValTruncLnorm
gives the truncated mean. -
stopLossLnorm
gives the stop-loss. -
meanExcessLnorm
gives the mean excess loss. -
VatRLnorm
gives the Value-at-Risk. -
TVatRLnorm
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRLnorm is a wrapper of the qlnorm
function from the stats package.
Examples
expValLnorm(meanlog = 3, sdlog = 5)
varLnorm(meanlog = 3, sdlog = 5)
kthMomentLnorm(k = 2, meanlog = 3, sdlog = 5)
expValLimLnorm(d = 2, meanlog = 2, sdlog = 5)
expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5)
# Values greater than d
expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5, less.than.d = FALSE)
stopLossLnorm(d = 2, meanlog = 2, sdlog = 5)
meanExcessLnorm(d = 2, meanlog = 2, sdlog = 5)
VatRLnorm(kap = 0.8, meanlog = 3, sdlog = 5)
TVatRLnorm(kap = 0.8, meanlog = 2, sdlog = 5)
Logarithmic Distribution
Description
Logarithmic distribution with probability parameter \gamma
.
Usage
dLogarithmic(x, prob)
pLogarithmic(q, prob, lower.tail = TRUE)
expValLogarithmic(prob)
varLogarithmic(prob)
VatRLogarithmic(kap, prob)
mgfLogarithmic(t, prob)
pgfLogarithmic(t, prob)
Arguments
x , q |
vector of quantiles. |
prob |
probability parameter |
lower.tail |
logical; if TRUE (default), probabilities are
|
kap |
probability. |
t |
t. |
Details
The Logarithmic distribution with probability parameter \gamma
has probability mass function :
Pr(X = k) = \frac{-\gamma^{k}}{\ln(1 - \gamma)k}
,
for k = 0, 1, 2, \dots
,
and \gamma \in (0, 1)
].
Value
Function :
-
dLogarithmic
gives the probability density function (PDF). -
pLogarithmic
gives the cumulative density function (CDF). -
expValLogarithmic
gives the expected value. -
varLogarithmic
gives the variance. -
VatRLogarithmic
gives the Value-at-Risk. -
mgfLogarithmic
gives the moment generating function (MGF). -
pgfLogarithmic
gives the probability generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
dLogarithmic(x = 3, prob = 0.2)
pLogarithmic(q = 3, prob = 0.2)
expValLogarithmic(prob = 0.50)
varLogarithmic(prob = 0.50)
VatRLogarithmic(kap = 0.99, prob = 0.2)
mgfLogarithmic(t = .2, prob = 0.50)
pgfLogarithmic(t = .2, prob = 0.50)
Negative Binomial Distribution
Description
Negative binomial distribution with parameters r
(number of successful
trials) and p
(probability of success).
Usage
expValNBinom(
size,
prob = (1/(1 + beta)),
beta = ((1 - prob)/prob),
nb_tries = FALSE
)
varNBinom(
size,
prob = (1/(1 + beta)),
beta = ((1 - prob)/prob),
nb_tries = FALSE
)
mgfNBinom(
t,
size,
prob = (1/(1 + beta)),
beta = ((1 - prob)/prob),
nb_tries = FALSE
)
pgfNBinom(
t,
size,
prob = (1/(1 + beta)),
beta = ((1 - prob)/prob),
nb_tries = FALSE
)
Arguments
size |
Number of successful trials. |
prob |
Probability of success in each trial. |
beta |
Alternative parameterization of the negative binomial distribution where beta = (1 - p) / p. |
nb_tries |
logical; if |
t |
t. |
Details
When k
is the number of failures until the r
th success,
with a probability p
of a success, the negative binomial has density:
\left(\frac{r + k - 1}{k}\right) (p)^{r} (1 - p)^{k}
for k \in \{0, 1, \dots \}
When k
is the number of trials until the r
th success,
with a probability p
of a success, the negative binomial has density:
\left(\frac{k - 1}{r - 1}\right) (p)^{r} (1 - p)^{k - r}
for k \in \{r, r + 1, r + 2, \dots \}
The alternative parameterization of the negative binomial with parameter
\beta
, and k
being the number of trials, has density:
\frac{\Gamma(r + k)}{\Gamma(r) k!} \left(\frac{1}{1 + \beta}\right)^{r}%
\left(\frac{\beta}{1 + \beta}\right)^{k - r}
for k \in \{0, 1, \dots \}
Value
Function :
-
expValNBinom
gives the expected value. -
varNBinom
gives the variance. -
mgfNBinom
gives the moment generating function (MGF). -
pgfNBinom
gives the probability generating function (PGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
# Where k is the number of trials for a rth success
expValNBinom(size = 2, prob = .4)
# Where k is the number of failures before a rth success
expValNBinom(size = 2, prob = .4, nb_tries = TRUE)
# With alternative parameterization where k is the number of trials
expValNBinom(size = 2, beta = 1.5)
# Where k is the number of trials for a rth success
varNBinom(size = 2, prob = .4)
# Where k is the number of failures before a rth success
varNBinom(size = 2, prob = .4, nb_tries = TRUE)
# With alternative parameterization where k is the number of trials
varNBinom(size = 2, beta = 1.5)
mgfNBinom(t = 1, size = 4, prob = 0.5)
pgfNBinom(t = 5, size = 3, prob = 0.3)
Normal Distribution
Description
Normal distribution
Usage
expValNorm(mean, sd)
varNorm(mean, sd)
expValLimNorm(d, mean = 0, sd = 1)
expValTruncNorm(d, mean = 0, sd = 1, less.than.d = TRUE)
stopLossNorm(d, mean = 0, sd = 1)
meanExcessNorm(d, mean = 0, sd = 1)
VatRNorm(kap, mean = 0, sd = 1)
TVatRNorm(kap, mean = 0, sd = 1)
mgfNorm(t, mean = 0, sd = 1)
Arguments
mean |
mean (location) parameter |
sd |
standard deviation |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The Normal distribution with mean \mu
and standard deviation
\sigma
has density:
\frac{1}{\sqrt{2\pi}\sigma}\textrm{e}^{-\frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^2}
for x \in \mathcal{R}
, \mu \in \mathcal{R}, \sigma > 0
.
Value
Function :
-
expValNorm
gives the expected value. -
varNorm
gives the variance. -
expValLimNorm
gives the limited mean. -
expValTruncNorm
gives the truncated mean. -
stopLossNorm
gives the stop-loss. -
meanExcessNorm
gives the mean excess loss. -
VatRNorm
gives the Value-at-Risk. -
TVatRNorm
gives the Tail Value-at-Risk. -
mgfNorm
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRNorm is a wrapper of the qnorm
function from the stats package.
Examples
expValNorm(mean = 3, sd = 5)
varNorm(mean = 3, sd = 5)
expValLimNorm(d = 2, mean = 2, sd = 5)
expValTruncNorm(d = 2, mean = 2, sd = 5)
stopLossNorm(d = 2, mean = 2, sd = 5)
meanExcessNorm(d = 2, mean = 2, sd = 5)
VatRNorm(kap = 0.8, mean = 3, sd = 5)
TVatRNorm(kap = 0.8, mean = 2, sd = 5)
mgfNorm(t = 1, mean = 3, sd = 5)
Pareto Distribution
Description
Pareto distribution with shape parameter \alpha
and rate
parameter \lambda
.
Usage
dPareto(x, shape, rate = 1/scale, scale = 1/rate)
pPareto(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE)
expValPareto(shape, rate = 1/scale, scale = 1/rate)
varPareto(shape, rate = 1/scale, scale = 1/rate)
kthMomentPareto(k, shape, rate = 1/scale, scale = 1/rate)
expValLimPareto(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncPareto(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossPareto(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessPareto(d, shape, rate = 1/scale, scale = 1/rate)
VatRPareto(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRPareto(kap, shape, rate = 1/scale, scale = 1/rate)
Arguments
x , q |
vector of quantiles. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
lower.tail |
logical; if TRUE (default), probabilities are
|
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
Details
The Pareto distribution with rate parameter \lambda
as well as shape
parameter \alpha
has density:
f\left(x\right) = \frac{\alpha\lambda^{\alpha}}%
{(\lambda + x)^{\alpha + 1}}
for x \in \mathcal{R}^+
, \alpha, \lambda > 0
.
Value
Function :
-
dPareto
gives the probability density function (PDF). -
pPareto
gives the cumulative density function (CDF). -
expValPareto
gives the expected value. -
varPareto
gives the variance. -
kthMomentPareto
gives the kth moment. -
expValLimPareto
gives the limited mean. -
expValTruncPareto
gives the truncated mean. -
stopLossPareto
gives the stop-loss. -
meanExcessPareto
gives the mean excess loss. -
VatRPareto
gives the Value-at-Risk. -
TVatRPareto
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
# With scale parameter
dPareto(x = 2, shape = 2, scale = 5)
# With rate parameter
dPareto(x = 2, shape = 2, rate = .20)
# With scale parameter
pPareto(q = 2, shape = 2, scale = 5)
# With rate parameter
pPareto(q = 2, shape = 2, rate = 0.20)
# Survival function
pPareto(q = 2, shape = 2, rate = 0.20, lower.tail = FALSE)
# With scale parameter
expValPareto(shape = 5, scale = 0.5)
# With rate parameter
expValPareto(shape = 5, rate = 2)
# With scale parameter
varPareto(shape = 5, scale = 0.5)
# With rate parameter
varPareto(shape = 5, rate = 2)
# With scale parameter
kthMomentPareto(k = 4, shape = 5, scale = 0.5)
# With rate parameter
kthMomentPareto(k = 4, shape = 5, rate = 2)
# With scale parameter
expValLimPareto(d = 4, shape = 5, scale = 0.5)
# With rate parameter
expValLimPareto(d = 4, shape = 5, rate = 2)
# With scale parameter
expValTruncPareto(d = 4, shape = 5, scale = 0.5)
# With rate parameter
expValTruncPareto(d = 4, shape = 5, rate = 2)
# With scale parameter
stopLossPareto(d = 2, shape = 5, scale = 0.5)
# With rate parameter
stopLossPareto(d = 2, shape = 5, rate = 2)
# With scale parameter
meanExcessPareto(d = 6, shape = 5, scale = 0.5)
# With rate parameter
meanExcessPareto(d = 6, shape = 5, rate = 2)
# With scale parameter
VatRPareto(kap = .99, shape = 5, scale = 0.5)
# With rate parameter
VatRPareto(kap = .99, shape = 5, rate = 2)
# With scale parameter
TVatRPareto(kap = .99, shape = 5, scale = 0.5)
# With rate parameter
TVatRPareto(kap = .99, shape = 5, rate = 2)
Poisson Distribution
Description
Poisson distribution with rate parameter \lambda
.
Usage
expValPois(lambda)
varPois(lambda)
expValTruncPois(d, lambda, k0, less.than.d = TRUE)
TVatRPois(kap, lambda, k0)
mgfPois(t, lambda)
pgfPois(t, lambda)
Arguments
lambda |
Rate parameter |
d |
cut-off value. |
k0 |
point up to which to sum the distribution for the approximation. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The Poisson distribution with rate parameter \lambda
has probability mass function :
Pr(X = k) = \frac{\lambda^k \textrm{e}^{-\lambda}}{k!}
for k = 0, 1, 2, \dots
, and \lambda > 0
Value
Function :
-
expValPois
gives the expected value. -
varPois
gives the variance. -
expValTruncPois
gives the truncated mean. -
TVatRPois
gives the Tail Value-at-Risk. -
mgfPois
gives the moment generating function (MGF). -
pgfPois
gives the probability generating function (PGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
expValPois(lambda = 3)
varPois(lambda = 3)
expValTruncPois(d = 0, lambda = 2, k0 = 2E2, less.than.d = FALSE)
expValTruncPois(d = 2, lambda = 2, k0 = 2E2, less.than.d = TRUE)
TVatRPois(kap = 0.8, lambda = 3, k0 = 2E2)
mgfPois(t = 1, lambda = 3)
pgfPois(t = 1, lambda = 3)
Uniform Distribution
Description
Uniform distribution with min a
and max b
.
Usage
expValUnif(min = 0, max = 1)
varUnif(min = 0, max = 1)
kthMomentUnif(k, min = 0, max = 1)
expValLimUnif(d, min = 0, max = 1)
expValTruncUnif(d, min = 0, max = 1, less.than.d = TRUE)
stopLossUnif(d, min = 0, max = 1)
meanExcessUnif(d, min = 0, max = 1)
VatRUnif(kap, min = 0, max = 1)
TVatRUnif(kap, min = 0, max = 1)
mgfUnif(t, min = 0, max = 1)
Arguments
min , max |
lower and upper limits of the distribution. Must be finite. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The (continuous) uniform distribution with min and max parameters a
and b
respectively has density:
f(x) = \frac{1}{b - a} \times \bm{1}_{\{x \in [a, b] \}}
for x \in [a, b]
.
Value
Function :
-
expValUnif
gives the expected value. -
varUnif
gives the variance. -
kthMomentUnif
gives the kth moment. -
expValLimUnif
gives the limited mean. -
expValTruncUnif
gives the truncated mean. -
stopLossUnif
gives the stop-loss. -
meanExcessUnif
gives the mean excess loss. -
VatRUnif
gives the Value-at-Risk. -
TVatRUnif
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
expValUnif(min = 3, max = 4)
varUnif(min = 3, max = 4)
kthMomentUnif(k = 2, min = 3, max = 4)
expValLimUnif(d = 3, min = 2, max = 4)
expValTruncUnif(d = 3, min = 2, max = 4)
# Values greather than d
expValTruncUnif(d = 3, min = 2, max = 4, less.than.d = FALSE)
stopLossUnif(d = 3, min = 2, max = 4)
meanExcessUnif(d = 2, min = 2, max = 4)
VatRUnif(kap = .99, min = 3, max = 4)
TVatRUnif(kap = .99, min = 3, max = 4)
mgfUnif(t = 2, min = 0, max = 1)
Weibull Distribution
Description
Weibull distribution with shape parameter \tau
and rate parameter
\beta
.
Usage
expValWeibull(shape, rate = 1/scale, scale = 1/rate)
varWeibull(shape, rate = 1/scale, scale = 1/rate)
kthMomentWeibull(k, shape, rate = 1/scale, scale = 1/rate)
expValLimWeibull(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncWeibull(
d,
shape,
rate = 1/scale,
scale = 1/rate,
less.than.d = TRUE
)
stopLossWeibull(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessWeibull(d, shape, rate = 1/scale, scale = 1/rate)
VatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRWeibull(kap, shape, rate = 1/scale, scale = 1/rate)
Arguments
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
Details
The Weibull distribution with shape parameter \tau
and rate parameter
\beta
has density:
f\left(x\right) = \beta \tau \left( \beta x \right) ^{\tau -1} %
\mathrm{e}^{-\left( \beta x\right) ^{\tau }}
for x \in \mathcal{R}^+
, \beta > 0
, \tau > 0
Value
Function :
-
expValWeibull
gives the expected value. -
varWeibull
gives the variance. -
kthMomentWeibull
gives the kth moment. -
expValLimWeibull
gives the limited mean. -
expValTruncWeibull
gives the truncated mean. -
stopLossWeibull
gives the stop-loss. -
meanExcessWeibull
gives the mean excess loss. -
VatRWeibull
gives the Value-at-Risk. -
TVatRWeibull
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
# With scale parameter
expValWeibull(shape = 2, scale = 5)
# With rate parameter
expValWeibull(shape = 2, rate = 0.2)
# With scale parameter
varWeibull(shape = 2, scale = 5)
# With rate parameter
varWeibull(shape = 2, rate = 0.2)
# With scale parameter
kthMomentWeibull(k = 2, shape = 2, scale = 5)
# With rate parameter
kthMomentWeibull(k = 2, shape = 2, rate = 0.2)
# With scale parameter
expValLimWeibull(d = 2, shape = 2, scale = 5)
# With rate parameter
expValLimWeibull(d = 2, shape = 2, rate = 0.2)
# With scale parameter
expValTruncWeibull(d = 2, shape = 2, scale = 5)
# With rate parameter
expValTruncWeibull(d = 2, shape = 2, rate = 0.2)
# Mean of values greater than d
expValTruncWeibull(d = 2, shape = 2, rate = 0.2, less.than.d = FALSE)
# With scale parameter
stopLossWeibull(d = 2, shape = 3, scale = 4)
# With rate parameter
stopLossWeibull(d = 2, shape = 3, rate = 0.25)
# With scale parameter
meanExcessWeibull(d = 2, shape = 3, scale = 4)
# With rate parameter
meanExcessWeibull(d = 2, shape = 3, rate = 0.25)
# With scale parameter
VatRWeibull(kap = .2, shape = 3, scale = 4)
# With rate parameter
VatRWeibull(kap = .2, shape = 3, rate = 0.25)
# With scale parameter
TVatRWeibull(kap = .2, shape = 3, scale = 4)
# With rate parameter
TVatRWeibull(kap = .2, shape = 3, rate = 0.25)
Binomial Distribution
Description
Binomial distribution with size n
and probability of
success p
.
Usage
expValBinom(size, prob)
varBinom(size, prob)
expValTruncBinom(d, size, prob, less.than.d = TRUE)
VatRBinom(kap, size, prob)
TVatRBinom(kap, size, prob)
pgfBinom(t, size, prob)
mgfBinom(t, size, prob)
Arguments
size |
Number of trials (0 or more). |
prob |
Probability of success in each trial. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The binomial distribution with probability of success p
for n
trials
has probability mass function :
Pr(X = k) = \left(\frac{n}{k}\right) p^n (1 - p)^{n - k}
for k = 0, 1, 2, \dots, n
, p \in [0, 1]
, and n > 0
Value
Function :
-
mgfBinom
gives the moment generating function (MGF). -
pgfBinom
gives the probability generating function (PGF). -
expValBinom
gives the expected value. -
varBinom
gives the variance. -
expValTruncBinom
gives the truncated mean. -
TVatRBinom
gives the Tail Value-at-Risk. -
VatRBinom
gives the Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRBinom is a wrapper of the qbinom
function from the stats package.
Examples
expValBinom(size = 3, prob = 0.5)
varBinom(size = 3, prob = 0.5)
expValTruncBinom(d = 2, size = 3, prob = 0.5)
expValTruncBinom(d = 0, size = 3, prob = 0.5, less.than.d = FALSE)
VatRBinom(kap = 0.8, size = 5, prob = 0.2)
TVatRBinom(kap = 0.8, size = 5, prob = 0.2)
pgfBinom(t = 1, size = 3, prob = 0.5)
mgfBinom(t = 1, size = 3, prob = 0.5)
Bivariate Ali-Mikhail-Haq Copula
Description
Computes CDF, PDF and simulations of of the bivariate Ali-Mikhail-Haq copula.
Usage
cBivariateAMH(u1, u2, dependencyParameter, ...)
cdBivariateAMH(u1, u2, dependencyParameter, ...)
crBivariateAMH(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The bivariate Ali-Mikhail-Haq copula has CDF :
Value
Function :
-
cBivariateAMH
returns the value of the copula. -
cdBivariateAMH
returns the value of the density copula. -
crBivariateAMH
returns simulated values of the copula.
Examples
cBivariateAMH(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
cdBivariateAMH(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
crBivariateAMH(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Bivariate Cuadras-Augé Copula
Description
Computes CDF and simulations of the bivariate Cuadras-Augé copula.
Usage
cBivariateCA(u1, u2, dependencyParameter, ...)
crBivariateCA(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The bivariate Cuadras-Augé copula has CDF :
C(u_{1}, u_{2}) = u_{1}u_{2}^{1 - \alpha} \times%
\textbf{1}_{\{u_{1} \leq u_{2}\}} + u_{1}^{1 - \alpha}u_{2} \times%
\textbf{1}_{\{u_{1} \geq u_{2}\}}
for u_{1}, u_{2}, \alpha \in [0, 1]
.
It is the geometric mean of the independance and upper Fréchet bound copulas.
Value
Function :
-
cBivariateCA
returns the value of the copula. -
crBivariateCA
returns simulated values of the copula.
Examples
cBivariateCA(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
crBivariateCA(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Bivariate Clayton Copula
Description
Computes CDF, PDF and simulations of the bivariate Clayton copula.
Usage
cBivariateClayton(u1, u2, dependencyParameter, ...)
cdBivariateClayton(u1, u2, dependencyParameter, ...)
crBivariateClayton(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The bivariate Clayton copula has CDF :
Value
Function :
-
cBivariateAMH
returns the value of the copula. -
cdBivariateAMH
returns the value of the density function associated to the copula.
Examples
cBivariateClayton(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
cdBivariateClayton(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
crBivariateClayton(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Bivariate Eyraud-Farlie-Gumbel-Morgenstern (EFGM) Copula
Description
Computes CDF, PDF and simulations of the EFGM copula.
Usage
cBivariateEFGM(u1, u2, dependencyParameter)
cdBivariateEFGM(u1, u2, dependencyParameter)
crBivariateEFGM(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The EFGM copula has CDF :
Value
Function :
-
cBivariateEFGM
returns the value of the copula. -
cdBivariateEFGM
returns the value of the density function associated to the copula. -
crBivariateEFGM
returns simulated values of the copula.
Examples
cBivariateEFGM(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
cdBivariateEFGM(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
crBivariateEFGM(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Bivariate Frank Copula
Description
Computes CDF, PDF and simulations of the bivariate Frank copula.
Usage
cBivariateFrank(u1, u2, dependencyParameter, ...)
cdBivariateFrank(u1, u2, dependencyParameter, ...)
crBivariateFrank(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The bivariate Frank copula has CDF :
Value
Function :
-
cBivariateFrank
returns the value of the copula. -
cdBivariateFrank
returns the value of the density function associated to the copula. -
crBivariateFrank
returns simulated values of the copula.
Examples
cBivariateFrank(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
cdBivariateFrank(u1 = .76, u2 = 0.4, dependencyParameter = 0.4)
crBivariateFrank(numberSimulations = 10, seed = 42, dependencyParameter = 0.2)
Bivariate Gumbel Copula
Description
Computes CDF, PDF and simulations of the bivariate Gumbel copula.
Usage
cBivariateGumbel(u1, u2, dependencyParameter, ...)
cdBivariateGumbel(u1, u2, dependencyParameter, ...)
crBivariateGumbel(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameter. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The bivariate Gumbel copula has CDF :
Value
Function :
-
cBivariateGumbel
returns the value of the copula. -
cdBivariateGumbel
returns the value of the density function associated to the copula. -
crBivariateGumbel
returns simulated values of the copula.
Examples
cBivariateGumbel(u1 = .76, u2 = 0.4, dependencyParameter = 1.4)
cdBivariateGumbel(u1 = .76, u2 = 0.4, dependencyParameter = 1.4)
crBivariateGumbel(numberSimulations = 10, seed = 42, dependencyParameter = 1.2)
Bivariate Marshall-Olkin Copula
Description
Computes CDF and simulations of the bivariate Marshall-Olkin copula.
Usage
cBivariateMO(u1, u2, dependencyParameter, ...)
crBivariateMO(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameters, must be vector of length 2. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The bivariate Marshall-Olkin copula has CDF :
C(u_{1}, u_{2}) = u_{1}u_{2}^{1 - \beta} \times%
\textbf{1}_{\{u_{1}^{\alpha} \leq u_{2}^{\beta}\}} + %
u_{1}^{1 - \alpha}u_{2} \times \textbf{1}_{\{u_{1}^{\alpha}%
\geq u_{2}^{\beta}\}}
for u_{1}, u_{2}, \alpha, \beta \in [0, 1]
.
It is the geometric mean of the independance and upper Fréchet bound copulas.
Value
Function :
-
cBivariateMO
returns the value of the copula. -
crBivariateMO
returns simulated values of the copula.
Examples
cBivariateMO(u1 = .76, u2 = 0.4, dependencyParameter = c(0.4, 0.3))
crBivariateMO(numberSimulations = 10, seed = 42, dependencyParameter = c(0.2, 0.5))
Erlang Distribution
Description
Erlang distribution with shape parameter n
and rate parameter
\beta
.
Usage
dErlang(x, shape, rate = 1/scale, scale = 1/rate)
pErlang(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE)
expValErlang(shape, rate = 1/scale, scale = 1/rate)
varErlang(shape, rate = 1/scale, scale = 1/rate)
kthMomentErlang(k, shape, rate = 1/scale, scale = 1/rate)
expValLimErlang(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncErlang(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossErlang(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessErlang(d, shape, rate = 1/scale, scale = 1/rate)
VatRErlang(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRErlang(kap, shape, rate = 1/scale, scale = 1/rate)
mgfErlang(t, shape, rate = 1/scale, scale = 1/rate)
Arguments
x , q |
vector of quantiles. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
lower.tail |
logical; if TRUE (default), probabilities are
|
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
Details
The Erlang distribution with shape parameter n
and rate parameter
\beta
has density:
f\left(x\right) = \frac{\beta^{n}}{\Gamma(n)} x^{n - 1}%
\mathrm{e}^{-\beta x}
for x \in \mathcal{R}^+
, \beta > 0
,
n \in \mathcal{N}^+
.
Value
Function :
-
dErlang
gives the probability density function (PDF). -
pErlang
gives the cumulative density function (CDF). -
expValErlang
gives the expected value. -
varErlang
gives the variance. -
kthMomentErlang
gives the kth moment. -
expValLimErlang
gives the limited mean. -
expValTruncErlang
gives the truncated mean. -
stopLossErlang
gives the stop-loss. -
meanExcessErlang
gives the mean excess loss. -
VatRErlang
gives the Value-at-Risk. -
TVatRErlang
gives the Tail Value-at-Risk. -
mgfErlang
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRErlang is a wrapper of the qgamma
function from the stats package.
Examples
dErlang(x = 2, shape = 2, scale = 4)
pErlang(q = 2, shape = 2, scale = 4)
expValErlang(shape = 2, scale = 4)
varErlang(shape = 2, scale = 4)
kthMomentErlang(k = 3, shape = 2, scale = 4)
expValLimErlang(d = 2, shape = 2, scale = 4)
# With rate parameter
expValTruncErlang(d = 2, shape = 2, scale = 4)
# Values greater than d
expValTruncErlang(d = 2, shape = 2, scale = 4, less.than.d = FALSE)
stopLossErlang(d = 2, shape = 2, scale = 4)
meanExcessErlang(d = 3, shape = 2, scale = 4)
# With scale parameter
VatRErlang(kap = .2, shape = 2, scale = 4)
# With rate parameter
VatRErlang(kap = .2, shape = 2, rate = 0.25)
# With scale parameter
TVatRErlang(kap = .2, shape = 3, scale = 4)
# With rate parameter
TVatRErlang(kap = .2, shape = 3, rate = 0.25)
mgfErlang(t = 2, shape = 2, scale = .25)
Fréchet Copula
Description
Computes CDF and simulations of the Fréchet copula.
Usage
cFrechet(u1, u2, dependencyParameter, ...)
crFrechet(numberSimulations = 10000, seed = 42, dependencyParameter)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
dependencyParameter |
correlation parameters, must be vector of length 2. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The Fréchet copula has CDF :
C(u_{1}, u_{2}) = (1 - \alpha - \beta)(u_{1} \times u_{2}) + \alpha\min(u_{1}, u_{2})%
+ \beta\max(u_{1} + u_{2} - 1, 0)
for u_{1}, u_{2}, \alpha, \beta \in [0, 1]
and \alpha + \beta \leq 1
.
Value
Function :
Examples
cFrechet(u1 = .76, u2 = 0.4, dependencyParameter = c(0.2, 0.3))
crFrechet(numberSimulations = 10, seed = 42, dependencyParameter = c(0.2, 0.3))
Fréchet Lower Bound Copula
Description
Computes CDF and simulations of the Fréchet lower bound copula.
Usage
cFrechetLowerBound(u1, u2, ...)
crFrechetLowerBound(numberSimulations = 10000, seed = 42)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The Fréchet lower bound copula has CDF :
C(u_{1}, u_{2}) = \max(u_{1} + u_{2} - 1, 0)
for u_{1}, u_{2} \in [0, 1]
.
Value
Function :
-
cFrechetLowerBound
returns the value of the copula. -
crFrechetLowerBound
returns simulated values of the copula.
Examples
cFrechetLowerBound(u1 = .76, u2 = 0.4)
crFrechetLowerBound(numberSimulations = 10, seed = 42)
Fréchet Upper Bound Copula
Description
Computes CDF and simulations of the Fréchet upper bound copula.
Usage
cFrechetUpperBound(u1, u2, ...)
crFrechetUpperBound(numberSimulations = 10000, seed = 42)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The Fréchet upper bound copula has CDF :
C(u_{1}, u_{2}) = \min(u_{1}, u_{2})
for u_{1}, u_{2} \in [0, 1]
.
Value
Function :
-
cFrechetUpperBound
returns the value of the copula. -
crFrechetUpperBound
returns simulated values of the copula.
Examples
cFrechetUpperBound(u1 = .56, u2 = 0.4)
crFrechetUpperBound(numberSimulations = 10, seed = 42)
Independence Copula
Description
Computes CDF and simulations of the independence copula.
Usage
cIndependent(u1, u2, ...)
crIndependent(numberSimulations = 10000, seed = 42)
Arguments
u1 , u2 |
points at which to evaluate the copula. |
... |
other parameters. |
numberSimulations |
Number of simulations. |
seed |
Simulation seed, 42 by default. |
Details
The independence copula has CDF :
C(u_{1}, u_{2}) = u_{1} \times u_{2}
for u_{1}, u_{2} \in [0, 1]
.
Value
Function :
-
cIndependent
returns the value of the copula. -
crIndependent
returns simulated values of the copula.
Examples
cIndependent(u1 = .76, u2 = 0.4)
crIndependent(numberSimulations = 10, seed = 42)
Loglogistic Distribution
Description
Loglogistic distribution with shape parameter \tau
and scale
parameter \lambda
.
Usage
dLlogis(x, shape, rate = 1/scale, scale = 1/rate)
pLlogis(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE)
expValLlogis(shape, rate = 1/scale, scale = 1/rate)
varLlogis(shape, rate = 1/scale, scale = 1/rate)
kthMomentLlogis(k, shape, rate = 1/scale, scale = 1/rate)
expValLimLlogis(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncLlogis(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossLlogis(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessLlogis(d, shape, rate = 1/scale, scale = 1/rate)
VatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)
Arguments
x , q |
vector of quantiles. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
lower.tail |
logical; if TRUE (default), probabilities are
|
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
Details
The loglogistic distribution with shape parameter \tau
and scale parameter
\lambda
has density:
\frac{\tau \lambda^\tau x^{\tau -1}}{(\lambda^{\tau }+x^{\tau })^{2}}
for x \in \mathcal{R}^+
, \lambda, \tau > 0
.
Value
Function :
-
dLlogis
gives the probability density function (PDF). -
pLlogis
gives the cumulative density function (CDF). -
expValLlogis
gives the expected value. -
varLlogis
gives the variance. -
kthMomentLlogis
gives the kth moment. -
expValLimLlogis
gives the limited mean. -
expValTruncLlogis
gives the truncated mean. -
stopLossLlogis
gives the stop-loss. -
meanExcessLlogis
gives the mean excess loss. -
VatRLlogis
gives the Value-at-Risk. -
TVatRLlogis
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
dLlogis(x = 2, shape = 2, scale = 4)
# With scale parameter
pLlogis(q = 3, shape = 3, scale = 5)
# With rate parameter
pLlogis(q = 3, shape = 3, rate = 0.2)
# Survival function
pLlogis(q = 3, shape = 3, rate = 0.2, lower.tail = FALSE)
expValLlogis(shape = 2, scale = 4)
varLlogis(shape = 3, scale = 4)
kthMomentLlogis(k = 3, shape = 5, scale = 4)
expValLimLlogis(d = 2, shape = 2, scale = 4)
# With rate parameter
expValTruncLlogis(d = 2, shape = 2, scale = 4)
# Values greater than d
expValTruncLlogis(d = 2, shape = 2, scale = 4, less.than.d = FALSE)
stopLossLlogis(d = 2, shape = 2, scale = 4)
meanExcessLlogis(d = 3, shape = 2, scale = 4)
# With scale parameter
VatRLlogis(kap = .2, shape = 2, scale = 4)
# With rate parameter
VatRLlogis(kap = .2, shape = 2, rate = 0.25)
# With scale parameter
TVatRLlogis(kap = .2, shape = 3, scale = 4)
# With rate parameter
TVatRLlogis(kap = .2, shape = 3, rate = 0.25)
Discrete Uniform Distribution
Description
Discrete uniform distribution with min a
and max b
.
Usage
pUnifD(q, min = 0, max = 1)
dUnifD(x, min = 0, max = 1)
varUnifD(min = 0, max = 1)
expValUnifD(min = 0, max = 1)
Arguments
min , max |
lower and upper limits of the distribution. Must be finite. |
x , q |
vector of quantiles. |
Details
The (discrete) uniform distribution with min and max parameters a
and b
respectively has density:
\textrm{Pr}\left(X = x \right) = \frac{1}{b - a + 1}
for x \in \{a, a + 1, \dots, b - 1, b\}
.
Value
Function :
-
dUnifD
gives the probability density function (PDF). -
pUnifD
gives the cumulative density function (CDF). -
expValUnifD
gives the expected value. -
varUnifD
gives the variance.
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
pUnifD(q = 0.2, min = 0, max = 1)
dUnifD(min = 0, max = 1)
varUnifD(min = 0, max = 1)
expValUnifD(min = 0, max = 1)