| Type: | Package | 
| Version: | 0.4.0 | 
| Title: | Distributed Loading Estimation for General Factor Model | 
| Depends: | R (≥ 3.5.0) | 
| Suggests: | testthat (≥ 3.0.0) | 
| Description: | The load estimation method is based on a general factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.3 | 
| Imports: | elasticnet, stats | 
| LazyData: | true | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-02-21 12:42:58 UTC; 17993 | 
| Author: | Guangbao Guo [aut, cre, cph], Yaping Li [aut] | 
| Maintainer: | Guangbao Guo <ggb11111111@163.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-02-22 21:00:07 UTC | 
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
BlPC(data,m)
Arguments
| data | The data is total data set | 
| m | The m is the number of first layer principal component | 
Value
| ABr | estimation of load value | 
| ABc | estimation of load value | 
| DBr | estimation of error term | 
| DBc | estimation of error term | 
| SigmaB1hat | estimation of covariance | 
| SigmaB2hat | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
BlPC(data=ISE,m=3)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DBlPC(data,m,n1,K)
Arguments
| data | The data is total data set | 
| m | The m is the number of first layer principal component | 
| n1 | The n1 is the length of each data subset | 
| K | The K is the number of nodes | 
Value
| ABr | estimation of load value | 
| ABc | estimation of load value | 
| DBr | estimation of error term | 
| DBc | estimation of error term | 
| SigmaB1hat | estimation of covariance | 
| SigmaB2hat | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
DBlPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DFanPC(data,m,n1,K)
Arguments
| data | The data is total data set | 
| m | The m is the number of principal component | 
| n1 | The n1 is the length of each data subset | 
| K | The K is the number of nodes | 
Value
| AF | estimation of load value | 
| DF | estimation of error term | 
| SigmahatF | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
DFanPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DGaoPC(data,m,n1,K)
Arguments
| data | The data is total data set | 
| m | The m is the number of first layer principal component | 
| n1 | The n1 is the length of each data subset | 
| K | The K is the number of nodes | 
Value
| AG1 | estimation of load value | 
| AG2 | estimation of load value | 
| DG1 | estimation of error term | 
| DG2 | estimation of error term | 
| SigmahatG1 | estimation of covariance | 
| SigmahatG2 | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
DGaoPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DGulPC(data,m,n1,K)
Arguments
| data | The data is total data set | 
| m | The m is the number of first layer principal component | 
| n1 | The n1 is the length of each data subset | 
| K | The K is the number of nodes | 
Value
| AU1 | estimation of load value | 
| AU2 | estimation of load value | 
| DU3 | estimation of error term | 
| S1hat | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
DGulPC(data=ISE,m=3,n1=107,K=5)Dow Jones industrial average
Description
The Dow Jones industrial average (DJIA) data set.
Usage
data("DJIA")Format
- GAS.F
- a numeric vector 
- Nikkei.F
- a numeric vector 
- NZD
- a numeric vector 
- silver.F
- a numeric vector 
- RUSSELL.F
- a numeric vector 
- S.P.F
- a numeric vector 
- CHF
- a numeric vector 
- Dollar.index.F
- a numeric vector 
- Dollar.index
- a numeric vector 
- wheat.F
- a numeric vector 
- XAG
- a numeric vector 
- XAU
- a numeric vector 
Details
The data set comes from the Dow Jones industrial average (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(DJIA)
## maybe str(DJIA) ; plot(DJIA) ...
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DPC(data,m,n1,K)Arguments
| data | The data is total data set | 
| m | The m is the number of first layer principal component | 
| n1 | The n1 is the length of each data subset | 
| K | The K is the number of nodes | 
Value
| Ahat | estimation of load value | 
| Dhat | estimation of error term | 
| Sigmahat | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
DPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DPPC(data,m,n1,K)
Arguments
| data | The data is total data set | 
| m | The m is the number of first layer principal component | 
| n1 | The n1 is the length of each data subset | 
| K | The K is the number of nodes | 
Value
| Apro | estimation of load value | 
| Dpro | estimation of error term | 
| Sigmahatpro | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
DPPC(data=ISE,m=3,n1=107,K=5)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
FanPC(data,m)
Arguments
| data | The data is total data set | 
| m | The m is the number of principal component | 
Value
| AF | estimation of load value | 
| DF | estimation of error term | 
| SigmahatF | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
FanPC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
GaoPC(data,m)
Arguments
| data | The data is total data set | 
| m | The m is the number of principal component | 
Value
| AG1 | estimation of load value | 
| AG2 | estimation of load value | 
| DG1 | estimation of error term | 
| DG2 | estimation of error term | 
| SigmahatG1 | estimation of covariance | 
| SigmahatG2 | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
GaoPC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
GulPC(data,m)
Arguments
| data | The data is total data set | 
| m | The m is the number of first layer principal component | 
Value
| AU1 | estimation of load value | 
| AU2 | estimation of load value | 
| DU3 | estimation of error term | 
| Shat | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
GulPC(data=ISE,m=3) Istanbul Stock Exchange
Description
The Istanbul Stock Exchange (ISE) data set.
Usage
data("ISE")Format
- ISE
- a numeric vector 
- SP
- a numeric vector 
- DAX
- a numeric vector 
- FTSE
- a numeric vector 
- NIKKEI
- a numeric vector 
- BOVESPA
- a numeric vector 
- EU
- a numeric vector 
- EM
- a numeric vector 
Details
The data set comes from the Istanbul Stock Exchange (ISE) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(ISE)
## maybe str(ISE) ; plot(ISE) ...
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
PC(data,m)
Arguments
| data | The data is a highly correlated data set | 
| m | The m is the number of principal component | 
Value
| Ahat | estimation of load value | 
| Dhat | estimation of error term | 
| Sigmahat | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
PC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
PPC(data,m)
Arguments
| data | The data is total data set | 
| m | The m is the number of principal component | 
Value
| Apro | estimation of load value | 
| Dpro | estimation of error term | 
| Sigmahatpro | estimation of covariance | 
Author(s)
Guangbao Guo, Yaping Li
Examples
PPC(data=ISE,m=3)
New York Stock Exchange Composite Index
Description
The New York Stock Exchange Composite Index SECI(SECI) data set.
Usage
data("SECI")Format
- GBP
- a numeric vector 
- JPY
- a numeric vector 
- CAD
- a numeric vector 
- AAPL
- a numeric vector 
- AMZN
- a numeric vector 
- GE
- a numeric vector 
- JPM
- a numeric vector 
- MSFT
- a numeric vector 
- WFC
- a numeric vector 
- XOM
- a numeric vector 
- FCHI
- a numeric vector 
- FTSE
- a numeric vector 
- GDAXI
- a numeric vector 
Details
The data set comes from the prostate specific antigen (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(SECI)
## maybe str(SECI) ; plot(SECI) ...
Stock Portfolio Performance
Description
The Stock Portfolio Performance (SPP) data set.
Usage
data("SPP")Format
- X1
- a numeric vector 
- X2
- a numeric vector 
- X3
- a numeric vector 
- X4
- a numeric vector 
- X5
- a numeric vector 
- X6
- a numeric vector 
- X7
- a numeric vector 
- X8
- a numeric vector 
- X9
- a numeric vector 
- X10
- a numeric vector 
Details
The data set comes from the Stock Portfolio Performance (SPP) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(SPP)
## maybe str(SPP) ; plot(SPP) ...