Type: | Package |
Title: | Analysis of Bivariate Survival Data Based on Copulas |
Version: | 2.0 |
Date: | 2025-4-17 |
Maintainer: | Takeshi Emura <takeshiemura@gmail.com> |
Description: | Simulating bivariate survival data from copula models. Estimation of the association parameter in copula models. Two different ways to estimate the association parameter in copula models are implemented. A goodness-of-fit test for a given copula model is implemented. See Emura, Lin and Wang (2010) <doi:10.1016/j.csda.2010.03.013> for details. |
License: | GPL-2 |
Depends: | MASS |
NeedsCompilation: | no |
Packaged: | 2025-04-17 02:41:07 UTC; takes |
Author: | Takeshi Emura [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2025-04-17 04:20:06 UTC |
Analysis of Bivariate Survival Data
Description
Simulating bivariate survival data from copula models (Emura et al. 2019). Estimation of the association parameter in copula models. Two different ways to estimate the association parameter in copula models are implemented. A goodness-of-fit test for a given copula model is implemented. See Emura, Lin and Wang (2010) <doi:10.1016/j.csda.2010.03.013> for details. Also, Weibull regression is implemented (Section 2.6.3 of Emura et al. (2019)).
Details
Details are seen from the references.
Author(s)
Takeshi Emura Maintainer: Takeshi Emura <takeshiemura@gmail.com>
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
A goodness-of-fit test for the Clayton copula
Description
Perform a goodness-of-fit test for the Clayton copula based on Emura, Lin and Wang (2010). The test is asymptotically equivalent to the test of Shih (1998).
Usage
Test.Clayton(x.obs,y.obs,dx,dy,lower=0.001,upper=50,U.plot=TRUE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
lower |
lower bound for the association parameter |
upper |
upper bound for the association parameter |
U.plot |
if TRUE, draw the plot of U_1(theta) |
Details
See the references.
Value
theta1 |
association parameter by the pseudo-likelihood estimator |
theta2 |
association parameter by the unweighted estimator |
Stat |
log(theta1)-log(theta2) |
Z |
Z-value of the goodness-of-fit for the Clayton copula |
P |
P-value of the goodness-of-fit for the Clayton copula |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Shih JH (1998) A goodness-of-fit test for association in a bivariate survival model. Biometrika 85: 189-200
Examples
n=20
theta_true=2 ## association parameter ##
r1_true=2 ## hazard for X
r2_true=2 ## hazard for Y
set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log( 1-W+W*(1-V2)^(-theta_true/(theta_true+1)) )
C=runif(n,min=0,max=5)
x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C
Test.Clayton(x.obs,y.obs,dx,dy)
A goodness-of-fit test for the Gumbel copula
Description
Perform a goodness-of-fit test for the Gumbel copula based on Emura, Lin and Wang (2010).
Usage
Test.Gumbel(x.obs,y.obs,dx,dy,lower=0.01,upper=50,U.plot=TRUE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
lower |
lower bound for the association parameter |
upper |
upper bound for the association parameter |
U.plot |
if TRUE, draw the plot of U_1(theta) and U_2(theta) |
Details
See the references.
Value
theta1 |
association parameter by the pseudo-likelihood estimator |
theta2 |
association parameter by the unweighted estimator |
Stat |
log(theta1)-log(theta2) |
Z |
Z-value of the goodness-of-fit for the Clayton copula |
P |
P-value of the goodness-of-fit for the Clayton copula |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Examples
x.obs=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
y.obs=c(2,1,4,5,6,8,3,7,10,9,11,12,13,14,15)
dx=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
dy=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Test.Gumbel(x.obs,y.obs,dx,dy)
Estimation of an association parameter via the pseudo-likelihood
Description
Estimate the association parameter of the Clayton copula using bivariate survival data. The estimator was derived by Clayton (1978) and reformulated by Emura, Lin and Wang (2010).
Usage
U1.Clayton(x.obs,y.obs,dx,dy,lower=0.001,upper=50,U.plot=TRUE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
lower |
lower bound for the association parameter |
upper |
upper bound for the association parameter |
U.plot |
if TRUE, draw the plot of U_1(theta) |
Details
Details are seen from the references.
Value
theta |
association parameter |
tau |
Kendall's tau (=theta/(theta+2)) |
Author(s)
Takeshi Emura
References
Clayton DG (1978). A model for association in bivariate life tables and its application to epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141-51.
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Examples
n=200
theta_true=2 ## association parameter ##
r1_true=1 ## hazard for X
r2_true=1 ## hazard for Y
set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log( 1-W+W*(1-V2)^(-theta_true/(theta_true+1)) )
C=runif(n,min=0,max=5)
x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C
U1.Clayton(x.obs,y.obs,dx,dy)
Estimation of an association parameter via the unweighted estimator
Description
Estimate the association parameter of the Gumbel copula using bivariate survival data. The estimator was derived by Emura, Lin and Wang (2010).
Usage
U1.Gumbel(x.obs,y.obs,dx,dy,lower=0.01,upper=50,U.plot=TRUE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
lower |
lower bound for the association parameter |
upper |
upper bound for the association parameter |
U.plot |
if TRUE, draw the plot of U_1(theta) |
Details
Details are seen from the references.
Value
theta |
association parameter |
tau |
Kendall's tau (=theta/(theta+2)) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Examples
x.obs=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
y.obs=c(2,1,4,5,6,8,3,7,10,9,11,12,13,14,15)
dx=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
dy=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
U1.Gumbel(x.obs,y.obs,dx,dy)
Estimation of an association parameter via the unweighted estimator
Description
Estimate the association parameter of the Clayton copula using bivariate survival data. The estimator was defined as the unweighted estimator in Emura, Lin and Wang (2010).
Usage
U2.Clayton(x.obs,y.obs,dx,dy)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
Details
Details are seen from the references.
Value
theta |
association parameter |
tau |
Kendall's tau (=theta/(theta+2)) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Examples
n=200
theta_true=2 ## association parameter ##
r1_true=1 ## hazard for X
r2_true=1 ## hazard for Y
set.seed(1)
V1=runif(n)
V2=runif(n)
X=-1/r1_true*log(1-V1)
W=(1-V1)^(-theta_true)
Y=1/theta_true/r2_true*log( 1-W+W*(1-V2)^(-theta_true/(theta_true+1)) )
C=runif(n,min=0,max=5)
x.obs=pmin(X,C)
y.obs=pmin(Y,C)
dx=X<=C
dy=Y<=C
U2.Clayton(x.obs,y.obs,dx,dy)
Estimation of an association parameter via the pseudo-likelihood
Description
Estimate the association parameter of the Gumbel copula using bivariate survival data. The estimator was derived by Emura, Lin and Wang (2010).
Usage
U2.Gumbel(x.obs,y.obs,dx,dy,lower=0.01,upper=50,U.plot=TRUE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
lower |
lower bound for the association parameter |
upper |
upper bound for the association parameter |
U.plot |
if TRUE, draw the plot of U_1(theta) |
Details
Details are seen from the references.
Value
theta |
association parameter |
tau |
Kendall's tau (=theta/(theta+1)) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Examples
x.obs=c(1,2,3,4,5)
y.obs=c(2,1,4,5,6)
dx=c(1,1,1,1,1)
dy=c(1,1,1,1,1)
U2.Gumbel(x.obs,y.obs,dx,dy)
Weibull regression under the BB1 copula
Description
See Section 2.6.3 of Emura et al. (2019).
Usage
Weib.reg.BB1(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
zx |
matrix of covariates for X |
zy |
matrix of covariates for Y |
convergence.par |
if TRUE, show the details |
Details
Details are seen from the references.
Value
beta_x |
regression coefficients for X |
beta_y |
regression coefficients for Y |
alpha |
copula parameter |
delta |
copula parameter |
tau |
Kendall's tau |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
#TBA
Weibull regression under the BB1 copula with known "delta"
Description
See Section 2.6.3 of Emura et al. (2019).
Usage
Weib.reg.BB1.0(x.obs,y.obs,dx,dy,zx,zy,delta=0,convergence.par=FALSE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
zx |
matrix of covariates for X |
zy |
matrix of covariates for Y |
delta |
known copula parameter (d>=0) |
convergence.par |
if TRUE, show the details |
Details
Details are seen from the references.
Value
beta_x |
regression coefficients for X |
beta_y |
regression coefficients for Y |
alpha |
copula parameter |
tau |
Kendall's tau |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
#TBA
Weibull regression under the Clayton copula
Description
See Section 2.6.3 of Emura et al. (2019).
Usage
Weib.reg.Clayton(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
zx |
matrix of covariates for X |
zy |
matrix of covariates for Y |
convergence.par |
if TRUE, show the details |
Details
Details are seen from the references.
Value
beta_x |
regression coefficients for X |
beta_y |
regression coefficients for Y |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
#TBA
Weibull regression under the Frank copula
Description
See Section 2.6.3 of Emura et al. (2019).
Usage
Weib.reg.Frank(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
zx |
matrix of covariates for X |
zy |
matrix of covariates for Y |
convergence.par |
if TRUE, show the details |
Details
Details are seen from the references.
Value
beta_x |
regression coefficients for X |
beta_y |
regression coefficients for Y |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
#TBA
Weibull regression under the Gumbel copula
Description
See Section 2.6.3 of Emura et al. (2019).
Usage
Weib.reg.Gumbel(x.obs,y.obs,dx,dy,zx,zy,convergence.par=FALSE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
zx |
matrix of covariates for X |
zy |
matrix of covariates for Y |
convergence.par |
if TRUE, show the details |
Details
Details are seen from the references.
Value
beta_x |
regression coefficients for X |
beta_y |
regression coefficients for Y |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
#TBA
Weibull regression under the conditional BB1 copula
Description
See Section 2.6.3 of Emura et al. (2019).
Usage
Weib.reg.cBB1(x.obs,y.obs,dx,dy,zx,zy,zxy,convergence.par=FALSE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
zx |
matrix of covariates for X |
zy |
matrix of covariates for Y |
zxy |
matrix of covariates for copula |
convergence.par |
if TRUE, show the details |
Details
Details are seen from the references.
Value
beta_x |
regression coefficients for X |
beta_y |
regression coefficients for Y |
beta_xy |
regression coefficients for copula |
alpha |
copula parameter |
delta |
copula parameter |
tau |
Kendall's tau given beta_xy=0 |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
#TBA
Weibull regression under the conditional BB1 copula with known "delta"
Description
See Section 2.6.3 of Emura et al. (2019).
Usage
Weib.reg.cBB1.0(x.obs,y.obs,dx,dy,zx,zy,zxy,delta=0,convergence.par=FALSE)
Arguments
x.obs |
censored times for X |
y.obs |
censored times for Y |
dx |
censoring indicators for X |
dy |
censoring indicators for Y |
zx |
matrix of covariates for X |
zy |
matrix of covariates for Y |
zxy |
matrix of covariates for copula |
delta |
known copula parameter (d>=0) |
convergence.par |
if TRUE, show the details |
Details
Details are seen from the references.
Value
beta_x |
regression coefficients for X |
beta_y |
regression coefficients for Y |
beta_xy |
regression coefficients for copula |
alpha |
copula parameter |
tau |
Kendall's tau given beta_xy=0 |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
#TBA
Simulating data from the BB1 copula
Description
n pairs of (U,V) are generated from the BB1 copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.BB1(n,alpha,delta=0,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter |
delta |
BB1 copula's departure parameter from the Clayton (0 is the default) |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.BB1(n=n,alpha=1,delta=2,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the BB1 copula regression model
Description
n pairs of (U,V) are generated from the BB1 copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.BB1reg(n,alpha,delta=0,scale1=1,scale2=1,shape1=1,shape2=1,
beta1=0,beta2=0,beta12=0,Z.dist=runif,...)
Arguments
n |
sample size |
alpha |
association (copula) parameter |
delta |
BB1 copula's departure parameter from the Clayton (0 is the default) |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
beta1 |
regression coefficient for X |
beta2 |
regression coefficient for Y |
beta12 |
regression coefficient for copula |
Z.dist |
distribution for covariates |
... |
parameters for Z.dist |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Z |
Covariates |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=10
simu.BB1reg(n=n,alpha=1,delta=2,scale1=1,scale2=2,shape1=0.5,beta1=1,beta2=-1,beta12=2,shape2=2)
Simulating data from the Celebioglu-Cuadras (CC) copula
Description
n pairs of (U,V) are generated from the CC copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.CC(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter, -1<=alpha<=1 |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.CC(n=n,alpha=-1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the Clayton copula
Description
n pairs of (U,V) are generated from the Clayton copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.Clayton(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.Clayton(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the FGM copula
Description
n pairs of (U,V) are generated from the FGM copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.FGM(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter; -1<=alpha<=1 |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.FGM(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the Frank copula
Description
n pairs of (U,V) are generated from the Frank copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.Frank(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.Frank(n=n,alpha=10,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the Gumbel-Barnett (GB) copula
Description
n pairs of (U,V) are generated from the GB copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.GB(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter, 0<=alpha<=1 |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.GB(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the Gumbel copula
Description
n pairs of (U,V) are generated from the Gumbel copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.Gumbel(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.Gumbel(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the Joe copula
Description
n pairs of (U,V) are generated from the Joe copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.Joe(n,alpha,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.Joe(n=n,alpha=1,scale1=1,scale2=2,shape1=0.5,shape2=2)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")
Simulating data from the t-copula
Description
n pairs of (U,V) are generated from the t-copula. n paris of (X,Y) are generated from the corresponding bivariate survival model with the Weibull marginal distributions. The default parameters (scale1=scale2=shape1=shape2=1) give the unit exponential distributions.
Usage
simu.t(n,alpha,df=1,scale1=1,scale2=1,shape1=1,shape2=1,Print=FALSE)
Arguments
n |
sample size |
alpha |
association (copula) parameter |
df |
degrees of freedom (d=1 is the default) |
scale1 |
scale parameter for X |
scale2 |
scale parameter for Y |
shape1 |
shape parameter for X |
shape2 |
shape parameter for Y |
Print |
print Kendall's tau and means of X and Y if "TRUE" |
Details
See Section 2.6 of Emura et al.(2019) for copulas and bivariate survival times.
Value
U |
uniformly distributed on (0,1) |
V |
uniformly distributed on (0,1) |
X |
Weibull distributed (scale1, shape1) |
Y |
Weibull distributed (scale2, shape2) |
Author(s)
Takeshi Emura
References
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Compt Stat Data Anal 54: 3033-43
Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer
Examples
n=100
Dat=simu.t(n=n,alpha=0.8,df=1,scale1=1,scale2=2,shape1=0.5,shape2=2,Print=TRUE)
plot(Dat[,"U"],Dat[,"V"])
cor(Dat[,"U"],Dat[,"V"],method="kendall")
plot(Dat[,"X"],Dat[,"Y"])
cor(Dat[,"X"],Dat[,"Y"],method="kendall")