Package 'CommonMean.Copula'

July 21, 2025

Type Package
Title Common Mean Vector under Copula Models
Version 1.0.4
Date 2022-01-04
Author Jia-Han Shih
Maintainer Jia-Han Shih <tommy355097@gmail.com></tommy355097@gmail.com>
Description Estimate bivariate common mean vector under copula models with known correlation. In the current version, available copulas are the Clayton, Gumbel, Frank, Farlie-Gumbel-Morgenstern (FGM), and normal copulas. See Shih et al. (2019) <doi:10.1080 02331888.2019.1581782=""> and Shih et al. (2021) <under review=""> for details under the FGM and general copulas, respectively.</under></doi:10.1080>
Depends pracma, mvtnorm
License GPL-2
Encoding UTF-8
RoxygenNote 7.1.2
Repository CRAN

NeedsCompilation no

Date/Publication 2022-01-04 11:50:07 UTC

Contents

	CommonMean.Copula-package	2
	CommonMean.Copula	2
Index		5

CommonMean.Copula-package

Common Mean Vector under Copula Models

Description

Estimate bivariate common mean vector under copula models with known correlation. A maximum likelihood estimation procedure is employed. In the current version, available copulas are the Clayton, Gumbel, Frank, Farlie-Gumbel-Morgenstern (FGM), and normal copulas. See Shih et al. (2019) and Shih et al. (2021) for details under the FGM and general copulas, respectively.

Details

The method implemented in this package can be used for bivariate meta-analyses. See Shih et al. (2019) and Shih et al. (2021) for the example of bivariate entrance exam data analysis.

Author(s)

Jia-Han Shih

Maintainer: Jia-Han Shih <tommy355097@gmail.com>

References

Shih J-H, Konno Y, Chang Y-T, Emura T (2019) Estimation of a common mean vector in bivariate meta-analysis under the FGM copula, Statistics 53(3): 673-95.

Shih J-H, Konno Y, Emura T (2021-) Copula-based estimation methods for a common mean vector for bivariate meta-analyses, under review.

CommonMean.Copula Estimate bivariate common mean vector under copula models

Description

Estimate the common mean vector under copula models with known correlation. A maximum likelihood estimation procedure is employed. See Shih et al. (2019) and Shih et al. (2021) for details under the Farlie-Gumbel-Morgenstern (FGM) and general copulas, respectively.

Usage

```
CommonMean.Copula(Y1, Y2, Sigma1, Sigma2, rho, copula = "Clayton")
```

CommonMean.Copula

Arguments

Y1	Outcome 1
Y2	Outcome 2
Sigma1	Standard deviation of outcome 1.
Sigma2	Standard deviation of outcome 2.
rho	Correlation coefficient between outcomes.
copula	The copula to be used with possible options "Clayton", "Gumbel", "Frank", "FGM", and "normal".

Details

We apply "optim" routine to maximize the log-likelihood function. In addition, boundary corrected correlations will be used (Shih et al., 2019).

Value

Outcome 1	Outcome 1.			
Outcome 2	Outcome 2.			
Correlation	Correlation coefficient between outcomes.			
Sample size	Sample size.			
Copula	Selected copula.			
Copula parameter				
	Copula parameter.			
Corrected correlation				
	Boundary corrected correlations.			
CommonMean 1	Estimation results of outcome 1.			
CommonMean 2	Estimation results of outcome 2.			
V Log-likelihood	Covariance matrix of the common mean vector estimate. values			
	Fitted log-likelihood values.			

Note

When rho is 1 or -1, there are some computational issues since the copula parameter may correspond to infinite or negative infinite under some copulas. For the Clayton copula, if rho > 0.95, it will be approximated by 0.95. For the Frank copula, if rho > 0.95 or rho < -0.95, it will be approximated by 0.95 or -0.95, respectively.

References

Shih J-H, Konno Y, Chang Y-T, Emura T (2019) Estimation of a common mean vector in bivariate meta-analysis under the FGM copula, Statistics 53(3): 673-95.

Shih J-H, Konno Y, Emura T (2021-) Copula-based estimation methods for a common mean vector for bivariate meta-analyses, under review.

Examples

```
library(CommonMean.Copula)
Y1 = c(35,25,30,50,60) # outcome 1
Y2 = c(30,30,50,65,40) # outcome 2
Sigma1 = c(1.3,1.4,1.5,2.0,1.8) # SE of outcome 1
Sigma2 = c(1.7,1.9,2.5,2.2,1.8) # SE of outcome 2
rho = c(0.4,0.7,0.6,0.7,0.6) # correlation between two outcomes
CommonMean.Copula(Y1,Y2,Sigma1,Sigma2,rho) # input
```

Index

CommonMean.Copula,2 CommonMean.Copula-package,2