Package 'ColOpenData'

July 21, 2025

Title Download Colombian Demographic, Climate and Geospatial Data

Version 1.0.0

Description Downloads wrangled Colombian socioeconomic, geospatial,population and climate data from DANE <https://www.dane.gov.co/> (National Administrative Department of Statistics) and IDEAM (Institute of Hydrology, Meteorology and Environmental Studies). It solves the problem of Colombian data being issued in different web pages and sources by using functions that allow the user to select the desired database and download it without having to do the exhausting acquisition process.

License MIT + file LICENSE

URL https://github.com/epiverse-trace/ColOpenData,

https://epiverse-trace.github.io/ColOpenData/

BugReports https://github.com/epiverse-trace/ColOpenData/issues

Depends R (>= 3.3.0)

Imports checkmate, config, dplyr, magrittr, rlang, sf, stringdist, tidyr, utils

Suggests ggplot2, knitr, leaflet, rmarkdown, spelling, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/Needs/website epiverse-trace/epiversetheme

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Maria Camila Tavera-Cifuentes [aut, cre, cph] (ORCID: <https://orcid.org/0009-0007-1610-4583>), Julian Otero [aut, cph] (ORCID: <https://orcid.org/0009-0006-0429-7747>),

```
Natalia Nino-Machado [ctb] (ORCID:

<https://orcid.org/000-0001-7887-9439>),

Catalina Gonzalez-Uribe [ctb] (ORCID:

<https://orcid.org/0000-0002-3322-5017>),

Juan Manuel Cordovez [ctb] (ORCID:

<https://orcid.org/0000-0002-4005-3567>),

Hugo Gruson [rev] (ORCID: <https://orcid.org/0000-0002-4094-1476>),

Chris Hartgerink [rev] (ORCID: <https://orcid.org/0000-0003-1050-6809>),

Karim Mane [rev] (ORCID: <https://orcid.org/0000-0002-9892-2999>),

Joshua W. Lambert [rev] (ORCID:

<https://orcid.org/0000-0001-5218-3046>)
```

Maintainer Maria Camila Tavera-Cifuentes <mc.tavera@uniandes.edu.co>

Repository CRAN

Date/Publication 2025-03-06 14:40:06 UTC

Contents

aggregate_climate	3
climate_tags	3
code_to_name_dep	4
code_to_name_mun	4
datasets_list	5
divipola_table	5
download_climate	6
download_climate_geom	7
download_climate_stations	8
download_demographic	9
download_geospatial	9
download_pop_projections	0
geospatial_dictionaries	1
geospatial_dictionary	2
get_climate_tags	3
list_datasets	3
look_up	4
merge_geo_demographic	5
name_to_code_dep	5
name_to_code_mun	6
name_to_standard_dep	7
name_to_standard_mun	7
stations_in_roi	8

Index

aggregate_climate Aggregate climate data for different frequencies

Description

Aggregate time series downloaded climate data to day, month or year. Only observations under the tags TSSM_CON, TMN_CON, TMX_CON, PTPM_CON, and BSHG_CON can be aggregated, since are the ones where methodology for aggregation is explicitly provided by the source.

Usage

```
aggregate_climate(climate_data, frequency)
```

Arguments

climate_data	data.frame obtained from download functions. Only observations under the
	same tag can be aggregated.
frequency	character with the aggregation frequency: ("day", "month" or "year").

Value

data.frame object with the aggregated data.

Examples

```
lat <- c(4.172817, 4.172817, 4.136050, 4.136050, 4.172817)
lon <- c(-74.749121, -74.686169, -74.686169, -74.749121, -74.749121)
polygon <- sf::st_polygon(x = list(cbind(lon, lat)))
geometry <- sf::st_sfc(polygon)
roi <- sf::st_as_sf(geometry)
ptpm <- download_climate_geom(roi, "2022-11-01", "2022-12-31", "PTPM_CON")
monthly_ptpm <- aggregate_climate(ptpm, "month")
head(monthly_ptpm)
```

climate_tags climate_tags

Description

dictionary for climate tags

Usage

data(climate_tags)

Format

An object of class list of length 2.

Details

Dictionary for climate tags

code_to_name_dep Retrieve departments' DIVIPOLA names from codes

Description

Retrieve departments' DIVIPOLA official names from their DIVIPOLA codes.

Usage

code_to_name_dep(department_code)

Arguments

```
department_code
```

character vector with the DIVIPOLA codes of the departments.

Value

character vector with the DIVIPOLA name of the departments.

Examples

dptos <- c("73", "05", "11")
code_to_name_dep(dptos)</pre>

code_to_name_mun Retrieve municipalities' DIVIPOLA names from codes

Description

Retrieve municipalities' DIVIPOLA official names from their DIVIPOLA codes.

Usage

code_to_name_mun(municipality_code)

datasets_list

Arguments

municipality_code

character vector with the DIVIPOLA codes of the municipalities.

Value

character vector with the DIVIPOLA name of the municipalities.

Examples

```
mpios <- c("73001", "11001", "05615")
code_to_name_mun(mpios)</pre>
```

datasets_list datasets_list

Description

list of datasets description in English and Spanish

Usage

```
data(datasets_list)
```

Format

An object of class list of length 2.

Details

List containing both datasets description in English and Spanish

divipola_table Retrieve DIVIPOLA table

Description

Retrieve DIVIPOLA table including departments and municipalities. DIVIPOLA codification includes individual codes for each department and municipality following the political and administrative division.

Usage

divipola_table()

6

data.frame object with DIVIPOLA table.

Examples

```
divipola <- divipola_table()</pre>
```

download_climate Download climate from named geometry (municipality or department)

Description

Download climate data from stations contained in a municipality or department. This data is retrieved from local meteorological stations provided by IDEAM.

Usage

download_climate(code, start_date, end_date, tag)

Arguments

code	character with the DIVIPOLA code for the area (2 digits for departments and 5 digits for municipalities).
start_date	character with the first date to consult in the format "YYYY-MM-DD". (First available date is "1920-01-01").
end_date	character with the last date to consult in the format "YYYY-MM-DD". (Last available date is "2023-05-31").
tag	character containing climate tag to consult. Please use cliamte_tags() to check IDEAM tags.

Value

data.frame object with observations from the stations in the area.

```
ptpm <- download_climate("73148", "2021-11-14", "2021-11-20", "PTPM_CON")
head(ptpm)</pre>
```

download_climate_geom Download climate data from geometry

Description

Download climate data from stations contained in a Region of Interest (ROI/geometry). This data is retrieved from local meteorological stations provided by IDEAM.

Usage

```
download_climate_geom(geometry, start_date, end_date, tag)
```

Arguments

geometry	sf object containing the geometry for a given ROI. The geometry can be either a POLYGON or MULTIPOLYGON.
start_date	character with the first date to consult in the format "YYYY-MM-DD". (First available date is "1920-01-01").
end_date	character with the last date to consult in the format "YYYY-MM-DD". (Last available date is "2023-05-31").
tag	character containing climate tag to consult.

Value

data.frame object with observations from the stations in the area.

```
lat <- c(4.172817, 4.172817, 4.136050, 4.136050, 4.172817)
lon <- c(-74.749121, -74.686169, -74.686169, -74.749121, -74.749121)
polygon <- sf::st_polygon(x = list(cbind(lon, lat)))
geometry <- sf::st_sfc(polygon)
roi <- sf::st_as_sf(geometry)
ptpm <- download_climate_geom(roi, "2022-11-14", "2022-11-20", "PTPM_CON")
head(ptpm)
```

```
download_climate_stations
```

Download climate data from stations

Description

Download climate data from IDEAM stations by individual codes. This data is retrieved from local meteorological stations provided by IDEAM.

Usage

```
download_climate_stations(stations, start_date, end_date, tag)
```

Arguments

stations	data.frame containing the stations' codes and location. data.frame must be retrieved from the function stations_in_roi()
start_date	character with the first date to consult in the format "YYYY-MM-DD". (First available date is "1920-01-01").
end_date	character with the last date to consult in the format "YYYY-MM-DD". (Last available date is "2023-05-31").
tag	character containing climate tag to consult.

Value

data. frame object with observations from the stations in the area.

```
lat <- c(4.172817, 4.172817, 4.136050, 4.136050, 4.172817)
lon <- c(-74.749121, -74.686169, -74.686169, -74.749121, -74.749121)
polygon <- sf::st_polygon(x = list(cbind(lon, lat)))
geometry <- sf::st_sfc(polygon)
roi <- sf::st_as_sf(geometry)
stations <- stations_in_roi(roi)
ptpm <- download_climate_stations(
    stations, "2022-11-14", "2022-11-20", "PTPM_CON"
)
head(ptpm)
```

download_demographic Download demographic dataset

Description

This function downloads demographic datasets from the National Population and Dwelling Census (CNPV) of 2018.

Usage

```
download_demographic(dataset)
```

Arguments

dataset character with the demographic dataset name. Please use list_datasets("demographic", "EN") or list_datasets("demographic", "ES") to check available datasets.

Value

data. frame object with downloaded data.

Examples

```
house_under_15 <- download_demographic("DANE_CNPVH_2018_1HD")
head(house_under_15)</pre>
```

download_geospatial Download geospatial dataset

Description

This function downloads geospatial datasets from the National Geostatistical Framework at different levels of spatial aggregation. These datasets include a summarized version of the National Population and Dwelling Census (CNPV) with demographic and socioeconomic information for each spatial unit.

Usage

```
download_geospatial(
   spatial_level,
   simplified = TRUE,
   include_geom = TRUE,
   include_cnpv = TRUE
)
```

Arguments

<pre>spatial_level</pre>	character with the spatial level to be consulted:
	• "DPTO" or "department": Department.
	 "MPIO" or "municipality": Municipality.
	 "MPIOCL" or "municipality_class": Municipality including class.
	 "SETU" or "urban_sector": Urban Sector.
	 "SETR" or "rural_sector": Rural Sector.
	• "SECU" or "urban_section": Urban Section.
	 "SECR" or "rural_section": Rural Section.
	• "ZU" or "urban_zone": Urban Zone.
	 "MZN" or "block": Block.
simplified	logical for indicating if the downloaded spatial data should be a simplified ver- sion of the geometries. Simplified versions are lighter but less precise, and are only recommended for easier applications like plots. Default is TRUE.
include_geom	logical for including (or not) the spatial geometry. Default is TRUE. If TRUE, the function will return an "sf" data.frame.
include_cnpv	logical for including (or not) CNPV demographic and socioeconomic informa- tion. Default is TRUE.

Value

data.frame object with downloaded data.

Examples

```
departments <- download_geospatial("department")
head(departments)</pre>
```

download_pop_projections

Download population projections

Description

This function downloads population projections and back projections taken from the National Population and Dwelling Census of 2018 (CNPV), adjusted after COVID-19. Available years are different for each spatial level:

- "national": 1950 2070.
- "national" with sex: 1985 2050.
- "department": 1985 2050.

- "department" with sex: 1985 2050.
- "municipality": 1985 2035.
- "municipality" with sex: 1985 2035.
- "municipality" with sex and ethnic groups: 2018 2035.

Usage

```
download_pop_projections(
   spatial_level,
   start_year,
   end_year,
   include_sex = FALSE,
   include_ethnic = FALSE
)
```

Arguments

<pre>spatial_level</pre>	character with the spatial level to be consulted. Can be either "national", "department" or "municipality".
start_year	numeric with the start year to be consulted.
end_year	numeric with the end year to be consulted.
include_sex	logical for including (or not) division by sex. Default is FALSE.
include_ethnic	logical for including (or not) division by ethnic group (only available for "municipality"). Default is FALSE.

Value

data.frame object with downloaded data.

Examples

```
pop_proj <- download_pop_projections("national", 2020, 2030)
head(pop_proj)</pre>
```

geospatial_dictionaries

geospatial_dictionaries

Description

dictionaries of variables presented in geospatial datasets

Usage

data(geospatial_dictionaries)

Format

An object of class list of length 2.

Details

Dictionaries for geospatial datasets in English and Spanish

geospatial_dictionary Download data dictionaries

Description

Retrieve geospatial data dictionaries to understand internal tags and named columns. Dictionaries are available in English and Spanish.

Usage

```
geospatial_dictionary(spatial_level, language = "ES")
```

Arguments

spatial_level	character with the spatial level to be consulted:
	• "DPTO" or "department": Department.
	 "MPIO" or "municipality": Municipality.
	 "MPIOCL" or "municipality_class": Municipality including class.
	• "SETU" or "urban_sector": Urban Sector.
	 "SETR" or "rural_sector": Rural Sector.
	 "SECU" or "urban_section": Urban Section.
	 "SECR" or "rural_section": Rural Section.
	• "ZU" or "urban_zone": Urban Zone.
	 "MZN" or "block": Block.
language	character with the language of the dictionary variables ("EN" or "ES". Default is "ES".

Value

data.frame object with geospatial data dictionary.

```
dict <- geospatial_dictionary("setu", "EN")
head(dict)</pre>
```

Description

Retrieve available climate tags to be consulted. The list is only available in Spanish.

Usage

```
get_climate_tags(language = "ES")
```

Arguments

language character with the language of the tags ("EN" or "ES". Default is "ES".

Value

data.frame object with available climate tags.

Examples

```
dict <- get_climate_tags("ES")
head(dict)</pre>
```

list_datasets Download list of available datasets

Description

List all available datasets by name, including group, source, year, level, category and description.

Usage

```
list_datasets(module = "all", language = "ES")
```

Arguments

module	character with module to be consulted ("demographic", "geospatial" or "climate"). Default is "all".
language	character with the language of dataset details ("EN" or "ES". Default is "ES".

Value

data.frame object with the available datasets.

Examples

```
list <- list_datasets("geospatial", "EN")
head(list)</pre>
```

look_up

Filter list of available datasets based on keywords given by the user

Description

List available datasets containing user-specified keywords in their descriptions.

Usage

```
look_up(keywords, module = "all", logic = "or", language = "EN")
```

Arguments

keywords	character or vector of characters to be look up in the description.
module	character with module to be consulted ("demographic", "geospatial", "climate"). Default is "all".
logic	A character string specifying the matching logic. Can be either "or" or "and". Default is "or":
	• logic = "or": Matches rows containing at least one of the specified key- words in their descriptions.
	 logic = "and": Matches rows containing all of the specified keywords in their descriptions.
language	character with the language of the keywords ("EN" or "ES". Default is "EN".

Value

data.frame object with the available datasets containing information related to the consulted keywords.

Examples

```
found <- look_up(c("sex", "age"), "demographic", "and", "EN")
head(found)</pre>
```

14

merge_geo_demographic Match and merge geospatial and demographic datasets

Description

This function adds the key information of a demographic dataset to a geospatial dataset based on the spatial aggregation level. Since the smallest level of spatial aggregation present in the demographic datasets is municipality, this function can only merge with geospatial datasets that present municipality or department level.

Usage

```
merge_geo_demographic(demographic_dataset, simplified = TRUE)
```

Arguments

simplified logical for indicating if the downloaded spatial data should be a simplified version of the geometries. Simplified versions are lighter but less precise, and are recommended for easier applications like plots. Default is TRUE.

Value

data. frame object with the merged data.

Examples

```
merged <- merge_geo_demographic("DANE_CNPVV_2018_9VD", TRUE)
head(merged)</pre>
```

name_to_code_dep Retrieve departments' DIVIPOLA codes from names

Description

Retrieve departments' DIVIPOLA codes from their names.

Usage

name_to_code_dep(department_name)

Arguments

department_name

character vector with the names of the departments.

Value

character vector with the DIVIPOLA codes of the departments.

Examples

```
dptos <- c("Tolima", "Huila", "Amazonas")
name_to_code_dep(dptos)</pre>
```

name_to_code_mun Retrieve municipalities' DIVIPOLA codes from names

Description

Retrieve municipalities' DIVIPOLA codes from their names. Since there are municipalities with the same names in different departments, the input must include two vectors: one for the departments and one for the municipalities in said departments. If only one department is provided, it will try to match all municipalities in the second vector inside that department. Otherwise, the vectors must be the same length.

Usage

name_to_code_mun(department_name, municipality_name)

Arguments

department_name

character vector with the names of the departments containing the municipalities.

municipality_name

character vector with the names of the municipalities.

Value

character vector with the DIVIPOLA codes of the municipalities.

Examples

```
dptos <- c("Huila", "Antioquia")
mpios <- c("Pitalito", "Turbo")
name_to_code_mun(dptos, mpios)</pre>
```

16

name_to_standard_dep Translate department names to official departments' DIVIPOLA names

Description

Department names are usually manually input, which leads to multiple errors and lack of standardization. This functions translates department names to their respective official names from DIVIPOLA.

Usage

name_to_standard_dep(department_name)

Arguments

department_name

character vector with the names to be translated.

Value

character vector with the DIVIPOLA name of the departments.

Examples

```
dptos <- c("Bogota DC", "San Andres")
name_to_standard_dep(dptos)</pre>
```

name_to_standard_mun Translate municipality names to official municipalities' DIVIPOLA names

Description

Municipality names are usually manually input, which leads to multiple errors and lack of standardization. This functions translates municipality names to their respective official names from DIVIPOLA.

Usage

name_to_standard_mun(department_name, municipality_name)

Arguments

department_name

character vector with the names of the departments containing the municipali-

ties. municipality_name

character vector with the names to be translated.

Value

character vector with the DIVIPOLA name of the municipalities.

Examples

```
dptos <- c("Bogota", "Tolima")
mpios <- c("Bogota DC", "CarmendeApicala")
name_to_standard_mun(dptos, mpios)</pre>
```

stations_in_roi Stations in region of interest

Description

Download and filter climate stations contained inside a region of interest (ROI).

Usage

```
stations_in_roi(geometry)
```

Arguments

geometry	sf object containing the geometry for a given ROI. The geometry can be either
	a POLYGON or MULTIPOLYGON.

Value

data.frame object with the stations contained inside the consulted geometry.

Examples

```
lat <- c(5.166278, 5.166278, 4.982247, 4.982247, 5.166278)
lon <- c(-75.678072, -75.327859, -75.327859, -75.678072, -75.678072)
polygon <- sf::st_polygon(x = list(cbind(lon, lat)))
geometry <- sf::st_sfc(polygon)
roi <- sf::st_as_sf(geometry)
stations <- stations_in_roi(roi)
head(stations)
```

18

Index

* datasets climate_tags, 3 datasets_list, 5 geospatial_dictionaries, 11 aggregate_climate, 3 climate_tags, 3 code_to_name_dep, 4 code_to_name_mun, 4 datasets_list, 5 divipola_table, 5 download_climate, 6 download_climate_geom, 7 download_climate_stations, 8 download_demographic,9 download_geospatial, 9 download_pop_projections, 10 geospatial_dictionaries, 11 geospatial_dictionary, 12 get_climate_tags, 13 list_datasets, 13 look_up, 14 merge_geo_demographic, 15 name_to_code_dep, 15 name_to_code_mun, 16 name_to_standard_dep, 17 name_to_standard_mun, 17 $\texttt{stations_in_roi, 18}$