Type: | Package |
Version: | 0.1-3 |
Date: | 2021-04-09 |
Title: | Climate Indices |
Author: | Fergus Reig-Gracia [aut, cre], Sergio M. Vicente-Serrano [aut], Fernando Dominguez-Castro [aut], Joaquin Bedia-Jiménez [ctb] |
Maintainer: | Fergus Reig-Gracia <fergusrg@gmail.com> |
Depends: | R (≥ 2.10), SPEI, chron, weathermetrics |
Description: | Computes 138 standard climate indices at monthly, seasonal and annual resolution. These indices were selected, based on their direct and significant impacts on target sectors, after a thorough review of the literature in the field of extreme weather events and natural hazards. Overall, the selected indices characterize different aspects of the frequency, intensity and duration of extreme events, and are derived from a broad set of climatic variables, including surface air temperature, precipitation, relative humidity, wind speed, cloudiness, solar radiation, and snow cover. The 138 indices have been classified as follow: Temperature based indices (42), Precipitation based indices (22), Bioclimatic indices (21), Wind-based indices (5), Aridity/ continentality indices (10), Snow-based indices (13), Cloud/radiation based indices (6), Drought indices (8), Fire indices (5), Tourism indices (5). |
License: | GPL (≥ 3) |
URL: | https://gitlab.com/indecis-eu/indecis |
LazyLoad: | yes |
Encoding: | UTF-8 |
Suggests: | MASS, rmarkdown, testthat |
NeedsCompilation: | no |
Packaged: | 2021-04-09 09:33:51 UTC; fergus |
RoxygenNote: | 7.1.1 |
ByteCompile: | true |
Collate: | 'ClimInd.R' 'ClimIndNews.R' 'custom_functions.R' 'data.R' 'ffdi.R' 'fwi1D.R' 'penman_fao_dia.R' 'nesterovIndex.R' 'macArthurFFDI.R' 'kbdindex.R' 'indecis_indices_functions.R' 'indecis_indices.R' 'indecis.R' |
Repository: | CRAN |
Date/Publication: | 2021-04-10 00:00:03 UTC |
ClimInd: Climate Indices
Description
Computes 138 standard climate indices at monthly, seasonal and annual resolution. These indices were selected, based on their direct and significant impacts on target sectors, after a thorough review of the literature in the field of extreme weather events and natural hazards. Overall, the selected indices characterize different aspects of the frequency, intensity and duration of extreme events, and are derived from a broad set of climatic variables, including surface air temperature, precipitation, relative humidity, wind speed, cloudiness, solar radiation, and snow cover. The 138 indices have been classified as follow: Temperature based indices (42), Precipitation based indices (22), Bioclimatic indices (21), Wind-based indices (5), Aridity/ continentality indices (10), Snow-based indices (13), Cloud/radiation based indices (6), Drought indices (8), Fire indices (5), Tourism indices (5).
Details
Info
See Also
Useful links:
ClimIndNews
Description
Show the NEWS file of the ClimInd package.
Usage
ClimIndNews()
Details
(See description)
data_all
Description
See wichita
Usage
data(data_all)
Format
An object of class list
of length 22.
Details
See description.
Atmospheric Clarity Index
Description
Ratio between solar radiation at surface and solar radiation at TOA (alt top of the atmosphere)
Usage
aci(data, toa, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
net radiation, J/m2 |
toa |
solar radiation at TOA, W/m2 |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
index value
Examples
data(data_all)
aci(data = data_all$radiation, toa = data_all$radiationtoa)
Function allow scale
Description
Function allow scale
Usage
allow_scale(name)
Arguments
name |
function name |
Value
allow or not allow
Average snow depth
Description
Average snow depth
Usage
asd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
snow depth, m
Examples
data(data_all)
asd(data = data_all$snowdepth)
Apparent temperature
Description
Index of the percived temperature.
Usage
at(taverage, w, vapor, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
taverage |
daily mean temperature, Celsius |
w |
average wind, m/s |
vapor |
water vapour pressure, hPa |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
index value
Formula
AT = TG + 0.33e -0.70v -4.00
TG = air temperature in Celsius ; v = wind speed in m/s; e= water vapour pressure in hPa
Examples
data(data_all)
at(taverage = data_all$tg, w = data_all$wind, vapor = data_all$VAPOUR)
Average temperature
Description
Average temperature
Usage
average_temp(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
maximum, minimum or medium temperature |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
average temperature
Budyko Index
Description
Budyko Index is based on characteristics of the surface heat and water balance.
Usage
bi(data, pr, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
net radiation, J/m2 |
pr |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
BI = 100\frac {Rn}{L*P}
Rn= annual net radiation, P = annual precipitation, L = latent heat of vaporization for water
References
Budyko M.I. The Heat Balance of the Earth's Surface U.S. Department of Commerce, Washington D.C (1958) 259 pp., translated by N.A. Stepanova
Examples
data(data_all)
bi(data = data_all$radiation, pr = data_all$rr)
TG of warmest quarter
Description
TG of the warmest quarter of the year
Usage
bio10(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio10(data = data_all$tg)
TG of coldest quarter
Description
TG of coldest quarter of the year
Usage
bio11(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio11(data = data_all$tg)
Precipitation of wettest month
Description
Total precipitation of the wettest month of the year
Usage
bio13(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio13(data = data_all$rr)
Precipitation of driest month
Description
Total precipitation of the driest month of the year
Usage
bio14(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio14(data = data_all$rr)
Precipitation coefficient of variation
Description
The coefficient of variation is a measure of the variation in monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the monthly total precipitation to the mean monthly total precipitation and is expressed as a percentage.
Usage
bio15(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Examples
data(data_all)
bio15(data = data_all$rr)
Precipitation wettest quarter
Description
Precipitation of the wettest quarter of the year
Usage
bio16(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio16(data = data_all$rr, na.rm = TRUE)
Precipitation of Driest Quarter
Description
Precipitation of the driest quarter of the year
Usage
bio17(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio17(data = data_all$rr)
Precipitation warmest quarter
Description
Precipitation of the warmest quarter of the year
Usage
bio18(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
Arguments
pr |
daily precipitation, mm |
taverage |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio18(pr=data_all$rr, taverage=data_all$tg)
Precipitation coldest quarter
Description
Precipitation of the coldest quarter of the year
Usage
bio19(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
Arguments
pr |
daily precipitation, mm |
taverage |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio19(pr=data_all$rr, taverage=data_all$tg)
Mean radiation
Description
Mean radiation (W m-2)
Usage
bio20(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
radiation, W m-2 |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
radiation, W m-2
References
Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J. and Scott, J.K. (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3, 53-64. doi: 10.1111/j.2041-210X.2011.00134.x
Examples
data(data_all)
bio20(data = data_all$radiation_w)
Temperature seasonality
Description
TG standard deviation * 100
Usage
bio4(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio4(data = data_all$tg)
TX warmest month
Description
TX of the warmest month of the year
Usage
bio5(data, tmax, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
tmax |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio5(data = data_all$tg, tmax = data_all$tx)
TN of coldest month
Description
TN of the coldest month of the year
Usage
bio6(data, tmin, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
tmin |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio6(data = data_all$tg, tmin = data_all$tn)
Temperature Annual Range
Description
TX of the warmest month minus TN of coldest month
Usage
bio7(data, tmin, tmax, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
tmin |
daily minimum temperature, Celsius |
tmax |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio7(data = data_all$tg, tmin = data_all$tn, tmax = data_all$tx)
TG of wettest quarter
Description
TG of the wettest quarter of the year
Usage
bio8(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
Arguments
pr |
daily precipitation, mm |
taverage |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio8(pr = data_all$rr, taverage = data_all$tg)
TG of driest quarter
Description
TG of the driest quarter of the year
Usage
bio9(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
Arguments
pr |
daily precipitation, mm |
taverage |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim
Examples
data(data_all)
bio9(pr = data_all$rr, taverage = data_all$tg)
Data with months and years in names
Description
Data with months and years in names
Usage
byMonths_chron(data)
Arguments
data |
data |
Value
dates
Et0
Description
Et0
Usage
calc_eto(
tmin,
tmax,
toa,
w,
mde,
lat,
tdew,
radiation = NA,
insolation = NA,
rh = NA,
na.rm = FALSE
)
Arguments
tmin |
daily minimum temperature, Celsius, Celsius |
tmax |
maximum temperature, Celsius |
toa |
radiation toa, J/m2 |
w |
average wind, m/s at 10m |
mde |
mde |
lat |
latitude |
tdew |
dew point, Celsius |
radiation |
radiation, J m-2 |
insolation |
insolation, hours |
rh |
relative humidity, percentage |
na.rm |
na.rm |
Value
et0
125. SPEI: Standardized Precipitation Evapotranspiration Index 1, 3, 6 and 12 month SPEI
Description
125. SPEI: Standardized Precipitation Evapotranspiration Index 1, 3, 6 and 12 month SPEI
Usage
calc_spei(eto, pr, data_names = NULL, scale = 3, na.rm = FALSE)
Arguments
eto |
et0 |
pr |
precipitation |
data_names |
names of each period of time |
scale |
scale |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
SPEI
SPI: Standardized Precipitation Index 1, 3, 6 and 12 month SPI
Description
SPI: Standardized Precipitation Index 1, 3, 6 and 12 month SPI
Usage
calc_spi(data, data_names = NULL, scale = 3, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
scale |
scale |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
SPI
Operation de data, agrupando los datos por valores de names
Description
Operation de data, agrupando los datos por valores de names
Usage
calcf_data(
data,
date,
time.scale,
extract_names = select_time_function,
data_names,
operation,
...
)
Arguments
data |
data |
date |
date |
time.scale |
month, season, year or hydrological_years |
extract_names |
Operation to split data |
data_names |
names of each period of time |
operation |
Main operation |
... |
... |
Value
result operation
Operation de data, agrupando los datos por valores de names
Description
Operation de data, agrupando los datos por valores de names
Usage
calcf_data_(data_names, data, operation, time.scale, ...)
Arguments
data_names |
names |
data |
data |
operation |
operation |
time.scale |
month, season, year or hydrological_years |
... |
... |
Value
operation
Operation de data para los valores de oks == ok
Description
Operation de data para los valores de oks == ok
Usage
calcf_data__(ok, oks, data, operation, ...)
Arguments
ok |
ok |
oks |
oks |
data |
data |
operation |
operation |
... |
... |
Value
operation
Calculate all indexes
Description
Calculate all indexes for a point
Usage
calculate_all(
data,
lat = NULL,
time.scale = YEAR,
data_names = NULL,
index_result = c(1:138),
na.rm = FALSE
)
Arguments
data |
data list |
lat |
latitude, degree |
time.scale |
month, season or year |
data_names |
names of each period of time |
index_result |
indexes to calculate |
na.rm |
logical. Should missing values (including NaN) be removed? (value or array by index) |
Value
all indexes
Calculate all indexes for all time scales
Description
Calculate all indexes for a point and all time scales
Usage
calculate_all_scales(data, lat = NULL)
Arguments
data |
data list |
lat |
latitude, degree |
Value
all indexes
Mean daily cloud cover
Description
Mean daily cloud cover (
Usage
cc(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
cloud cover, percentage |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
percentage
Examples
data(data_all)
cc(data = data_all$cloud)
Longest dry period
Description
Maximum length of consecutive dry days (RR<1)
Usage
cdd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
cdd(data = data_all$rr)
Maximum consecutive frost days
Description
Maximum number of consecutive days with TN < 0 Celsius
Usage
cfd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
cfd(data=data_all$tn)
Climatic moisture deficit
Description
ETo - evapotranspiration
Usage
cmd(
eto,
evapotranspiration,
data_names = NULL,
time.scale = YEAR,
na.rm = FALSE
)
Arguments
eto |
eto, mm |
evapotranspiration |
evapotranspiration, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
index value
References
Parks, S. A., Parisien, M. , Miller, C. , Holsinger, L. M. and Baggett, L. S. (2018), Fine-scale spatial climate variation and drought mediate the likelihood of reburning. Ecol Appl, 28: 573-586. doi: 10.1002/eap.1671
Examples
data(data_all)
cmd(eto = data_all$eto, evapotranspiration = data_all$evaporation)
Maximum consecutive summer days
Description
Maximum number of consecutive summer days (TX > 25 Celsius)
Usage
csd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
csd(data=data_all$tx)
Cold spell duration
Description
Count of days with at least 6 consecutive days when TN < 10th percentile. The 10th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.
Usage
csdi(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
csdi(data=data_all$tn)
Longest wet period
Description
Maximum length of consecutive wet days (RR>=1)
Usage
cwd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
cwd(data = data_all$rr)
Days TX32
Description
Number of days whith TX >= 32 Celsius on the interval June-August.
Usage
d32(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
d32(data = data_all$tx)
Heavy precipitation days
Description
Number of days with precipitation above 50mm
Usage
d50mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
d50mm(data = data_all$rr)
Very wet days
Description
Days with precipitation > 95th percentile. The 95th percentile is computed based on the time scale selected (month, season or year) not daily
Usage
d95p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
d95p(data = data_all$rr)
Dry days
Description
Number of days with less than 1 mm
Usage
dd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
dd(data = data_all$rr)
Difference days above/below Tx17
Description
(days tx > 17 Celsius)-(days TX < 17 Celsius)
Usage
dd17(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
dd17(data=data_all$tx)
Days wind gusts above 21 m/s
Description
Number of days with wind gusts above 21 m/s
Usage
dfx21(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
maximum wind gust, m/s |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
dfx21(data = data_all$windgust)
Wet days 1mm
Description
Total number of wet days >= 1 mm
Usage
dr1mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
dr1mm(data = data_all$rr)
Wet days 3mm
Description
Total number of Wet days >= 3mm
Usage
dr3mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
dr3mm(data = data_all$rr)
Diurnal temperature range
Description
Mean difference between TX and TN.
Usage
dtr(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
tmax |
daily maximum temperature, Celsius |
tmin |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
Formula
DTR_j = \frac{ \sum_{ i = 1 } ^ { I } ( TX_{ ij } - TN_{ ij })} {I}
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf
Examples
data(data_all)
dtr(tmax=data_all$tx, tmin=data_all$tn)
Emberger aridity index
Description
Aridity index based on annual precipitation and temperature range
Usage
eai(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
Arguments
pr |
daily precipitation, mm |
taverage |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
EAI = \frac {100*P}{Thm^2 - Tcm^2}
P = annual precipitation; Thm = Average temperature of the hottest month in Kelvin; Tcm= Average temperature of the coldest month in Kelvin
References
Emberger L. 1930. La végétation de la région méditerranéenne: essai d'une classification des groupements végétaux Revue Générale de Botanique, 42 (641–662), pp. 705-721
Examples
data(data_all)
eai(pr = data_all$rr, taverage = data_all$tg)
Effective precipitation
Description
Precipitation minus evapotranspiration
Usage
ep(eto, pr, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
eto |
et0, mm |
pr |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
mm
Examples
data(data_all)
ep(eto = data_all$eto, pr = data_all$rr)
Reference evapotranspiration
Description
If data available using Fao-56 Penman-Monteith
Usage
eto(
tmin,
tmax,
toa,
w,
lat,
tdew,
mde,
radiation = NA,
insolation = NA,
rh = NA,
data_names = NULL,
time.scale = YEAR,
na.rm = FALSE
)
Arguments
tmin |
daily minimum temperature, Celsius |
tmax |
daily maximum temperature, Celsius |
toa |
solar radiation at TOA, W/m2 |
w |
average wind, m/s |
lat |
latitude, degree |
tdew |
dew point, Celsius |
mde |
digital elevation model, m |
radiation |
net radiation, J/m2 |
insolation |
insolation, hours of sun |
rh |
relative humidity, percentage |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
mm
References
Chiew, F.H.S., Kamaladasa, N.N., Malano, H.M., McMahon, T.A., 1995. Penman–Monteith FAO-24 reference crop evapotranspiration and class-A pan data in Australia. Agric. Water Manage. 28, 9–21
Examples
data(data_all)
eto(tmin = data_all$tn, tmax = data_all$tx,
toa = data_all$radiationtoa, w = data_all$wind,
lat=data_all$lat, tdew = data_all$dewpoint,
mde=data_all$mde, radiation = data_all$radiation,
insolation=data_all$insolation, rh = data_all$humidity)
Extreme temperature range
Description
Difference between the maximum TX and the minimum TN.
Usage
etr(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
tmax |
daily maximum temperature, Celsius |
tmin |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
Examples
data(data_all)
etr(tmax=data_all$tx, tmin=data_all$tn)
Frost days
Description
Number of days with TN < 0 Celsius.
Usage
fd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
fd(data=data_all$tn)
Mac Arthur Forest Fire Danger Index
Description
Implementation of the Mac Arthur's Forest Fire Danger Index (FFDI)
Usage
ffdiIndex(madf, t, h, w)
Arguments
madf |
Mac Arthur's Drought Index. This is the output of the |
t |
t |
h |
Vector of relative humidity data (in percentage) |
w |
Vector of wind velocity records (in km/h) |
Value
A vector of (daily) FFDI data
Author(s)
Joaquin Bedia-Jiménez
References
McArthur, A.G. (1973) Forest Fire Danger Meter Mk.5. Commonwealth of Australian Forestry and Timber Bureau.
See Also
kbdindex
Finnish Forest Fire Danger Index
Description
Implementation of the FFFDI for vector data
Usage
fffdi(pr, pet, Wvol.init = 0.5, z = 60)
Arguments
pr |
A vector of daily precipitation (in mm) |
pet |
A vector of daily (potential) evapotranspiration data (in mm). |
Wvol.init |
Initialization value for volumetric moisture, in the range 0.1-0.5. Default to 0.5 (very wet soil), but see Details. |
z |
reference surface layer thickness (mm). Default to 60. |
Details
Volumetric moisture The default is 0.5, indicating that the soil is very wet and near field capacity. This is so, assuming that the index is started in early spring. This value is applied to all locations as a spatially constant initialization value. However, Vajda et al. (2014, Table 1) provide reference values for different soil moisture conditions. This value ranges from 0.1 (very dry) to 0.5 (very wet).
Value
A numeric vector containing FFFDI time series
Author(s)
Joaquin Bedia-Jiménez
References
Vajda, A., Venalainen, A., Suomi, I., Junila, P. and Makela, H., 2014. Assessment of forest fire danger in a boreal forest environment: description and evaluation of the operational system applied in Finland. Meteorol. Appl., 21: 879-887, DOI: 10.1002/met.1425
Mean of daily mean wind strength
Description
Mean of daily FG
Usage
fg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
average wind, m/s |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
wind, m/s
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
fg(data = data_all$wind)
Number of days with averaged wind above 10.8m/s
Description
Number of days with FG >=6 Bft (10.8 m/s)
Usage
fg6bft(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
average wind, m/s |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
ECA&D website: European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
fg6bft(data = data_all$wind)
Calm days
Description
Number of calm days (FG <=2 m/s)
Usage
fgcalm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
average wind, m/s |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
ECA&D website: European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
fgcalm(data = data_all$wind)
Foggy days
Description
Number of days with fog.
Usage
fod(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
cloud base below 100 meter, percentage |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Rastogi, B., A.P. Williams, D.T. Fischer, S.F. Iacobellis, K. McEachern, L. Carvalho, C. Jones, S.A. Baguskas, and C.J. Still, 2016: Spatial and Temporal Patterns of Cloud Cover and Fog Inundation in Coastal California: Ecological Implications. Earth Interact., 20, 1–19, doi: 10.1175/EI-D-15-0033.1
Examples
data(data_all)
fod(data = data_all$cloud100)
Date of first permanent snow cover
Description
First day of the longest period with consecutive snow cover day (day of the hydrological year).
Usage
fpsc(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
date
Examples
data(data_all)
fpsc(data = data_all$snowdepth)
Date of first snow cover
Description
First day when there is measurable snow cover (day of the hydrological year)
Usage
fsc(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
date
Examples
data(data_all)
fsc(data = data_all$snowdepth)
Number of snow days
Description
Number of snow days
Usage
fsd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snowfall, m of water equivalent |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
fsd(data = data_all$snowfall)
Fire Weather Index applied to 1D data
Description
Implementation of the Canadian Fire Weather Index System for vector data
Usage
fwi1D(
dates,
Tm,
H,
r,
W,
lat = 46,
what = "FWI",
init.pars = c(85, 6, 15),
spin.up = 0
)
Arguments
dates |
Vector of dates. This is a character string in the form |
Tm |
Vector of temperature records (deg. Celsius) |
H |
Vector of relative humidity records (%) |
r |
Vector of last 24-h accumulated precipitation (mm) |
W |
Vector of wind velocity records (Km/h) |
lat |
Optional. Latitude of the records (in decimal degrees). Default to 46, applying the default parameters of the original FWI System, developed in Canada. See Daylength Adjustment details. |
what |
Character vector, indicating the components of the FWI system to be returned.
Accepted values include any possible subset of the set { |
init.pars |
A numeric vector of length 3 with the initialization values for the FFMC, DMC and DC components, in this order. Default values as proposed by van Wagner (1987). |
spin.up |
Non-negative integer indicating the number of days considered for FWI spin-up. Default to 0 (i.e. no spin-up is considered). See the dedicated Section below for further details. |
Value
A matrix with the time (days) arranged in rows and the components selected in what
in columns. The attribute colnames
gives the component ordering. Default to a single-colum matrix returning FWI.
Daylength adjustment factors
By default, the function applies the original FWI daylength adjustment factors for DC and DMC (van Wagner 1987),
although it is possible to adjust them by as a function of latitude through the argument lat
.
The reference values used for each latitudinal range are those indicated in p.71 and Tables A3.1 and A3.2 (p69) in
Lawson and Armitage (2008).
FWI spin-up
FWI is initialized with some values for FFMC, DMC and DC components. This means that the first values of the series are not reliable,
until the index is iterated over several time steps and stabilizes (typically a few days suffice).
Thus, the first index values can be optionally set to NA
. The number of days at the beginning of the series to be set to NA
is controlled via the spin.up
argument.
Note
The FWI system should be computed by definition upon instantaneous values of temperature, relative humidity and wind speed measured a "noon local standar time", plus 24-h accumulated precipitation. The use of inadequate temporal resolution has important implicationas, as highlighted by Herrera et al. (2013). However, prior studies rely on adequate proxies, in order to exploit model databases containing just daily data (see e.g. Bediat et al. (2014)).
Author(s)
Joaquin Bedia-Jiménez
References
Lawson, B.D. & Armitage, O.B., 2008. Weather guide for the Canadian Forest Fire Danger Rating System. Northern Forestry Centre, Edmonton (Canada).
van Wagner, C.E., 1987. Development and structure of the Canadian Forest Fire Weather Index (Forestry Tech. Rep. No. 35). Canadian Forestry Service, Ottawa, Canada.
van Wagner, C.E., Pickett, T.L., 1985. Equations and FORTRAN program for the Canadian forest fire weather index system (Forestry Tech. Rep. No. 33). Canadian Forestry Service, Ottawa, Canada.
Herrera, S., Bedia, J., Gutierrez, J.M., Fernandez, J., Moreno, J.M., 2013. On the projection of future fire danger conditions with various instantaneous/mean-daily data sources. Climatic Change 118, 827-840.
Bedia, J., Herrera, S., Camia, A., Moreno, J.M., Gutierrez, J.M., 2014. Forest Fire Danger Projections in the Mediterranean using ENSEMBLES Regional Climate Change Scenarios. Climatic Change 122, 185-199.
Daily maximum wind gust
Description
Maximum value of daily maximum wind gust (m/s)
Usage
fxx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
maximum wind gust, m/s |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
wind, m/s
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
fxx(data = data_all$windgust)
Growing degree days
Description
Sum of degree days of TG over 4 Celsius (the daily mean temperature is less than 4 celsius, it is set equal to 4 celsius)
Usage
gd4(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300
Examples
data(data_all)
gd4(data=data_all$tg)
Growing season length
Description
Annual count of days between the first span of at least 6 days with TG > 5 Celsius and first span after 1 July of 6 days with TG < 5 Celsius.
Usage
gsl(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
gsl(data=data_all$tg)
Growing season precipitation
Description
Growing season (april to october) total precipitation
Usage
gsr(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
Examples
data(data_all)
gsr(data = data_all$rr)
Mean TG
Description
Mean of daily mean air temperature
Usage
gtg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
gtg(data=data_all$tg)
Mean TN
Description
Mean of daily minimum air temperature
Usage
gtn(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
gtn(data=data_all$tn)
Mean TX
Description
Mean of daily maximum air temperature
Usage
gtx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
gtx(data=data_all$tg)
Heating degree days
Description
accumulated degree when TG is below 17 Celsius
Usage
hd17(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
Formula
HD17_j = \sum_{j-1}^{I} (17 ^ oC - TG_ij)
References
Quayle, R. G., & Diaz, H. F. (1980). Heating degree day data applied to residential heating energy consumption. Journal of Applied Meteorology, 19(3), 241-246. doi: 10.1175/1520-0450(1980)019<0241:HDDDAT>2.0.CO;2
Examples
data(data_all)
hd17(data=data_all$tg)
Heat Index
Description
Combines air temperature and relative humidity to determine the human-perceived equivalent temperature
Usage
hi(taverage, rh, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
taverage |
daily mean temperature, Celsius |
rh |
relative humidity, percentage |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
index value
Formula
HI= -42,379+2,04901523*TG+10,14333127*rh-0,22475541*TG*rh-0.00683783*TG^2-0.05481717*rh^2+0.0122874*TG^2*rh+0.00085282*TG*rh^2-0.00000199*TG^2*rh^2
. Where TG is air temperature in ºF and rh is relative humidity in
References
The Heat Index Equation https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
Examples
data(data_all)
hi(taverage = data_all$tg, rh = data_all$humidity)
Heavy snowy days
Description
Number of days with snow depth more than 50 cm.
Usage
hsd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
hsd(data = data_all$snowdepth)
Hydrological years
Description
Hydrological years
Usage
hydrological_years(time)
Arguments
time |
chron |
Value
seasonals by years
Ice days
Description
Number of days with TX < 0 Celsius.
Usage
id(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
id(data=data_all$tx)
Johansson Continentality Index
Description
The Johansson Continentality Index is usually used for the climatic differentiation between continental and oceanic climates.
Usage
jci(data, data_names = NULL, value, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
value |
lat |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
JCI = \frac {1.7(Thm-Tcm)}{sinf}-20.4
Thm = Average temperature of the hottest month (Celsius); Tcm = Average temperature of the coldest month (Celsius); f = geographical latitude
References
Chronopoulou-Sereli A. 1996. Courses of Agricultural Meteorology.Publications Agricultural University of Athens: Athens, OH
Examples
data(data_all)
jci(data = data_all$tg, value = data_all$lat)
Keetch-Byram drought index and Mac Arthur Drought Factor
Description
Implementation of the Keetch Byram Drought Index and Mac Arthur's Drought Factor for vector data
Usage
kbdindex(dates, t, p, wrs = 5, start.date = NULL, what = "kbdi")
Arguments
dates |
Vector of dates. This is a character string in the form |
t |
Vector of daily temperature (in deg Celsius) |
p |
Vector of daily accumulated preciptation (mm) |
wrs |
Minimum total weekly precipitation value used to define a "rainy" week (in mm). Default to 5 mm. Ignored if |
start.date |
Starting date for computation. Default to |
what |
What index should be returned by the function?. Current options include:
|
Details
The physical theory for the Keetch-Byram Drought Index (Keetch and Byram, 1968) is based on a number of assumptions: The first assumption is that soil moisture is at field capacity with a water depth equivalent to about 200 mm. The second assumption is that the rate of moisture loss in an area depends on the vegetation cover in the area, and vegetation density is a function of the mean annual rainfall. Hence, daily transpiration is approximated by an inverse exponential function of the mean annual rainfall. Finally, the evaporation rate of soil moisture with time is assumed to be an estimation of relative evapotranspiration from exponential function of the daily maximum air temperature. Sensitivity analyses from earlier researchers have revealed that KBDI decays exponentially with an assumed maximum soil water deficit and is sensitive to the daily maximum air temperature (Dennison et al., 2013). Its values range from 0 to 800 (inches), with 800 in (203.2 mm after conversion) indicating extreme drought and zero indicating saturated soil.
The McArthur's Drought Factor was developed to predict the amount of fine fuel which would be available to be consumed in the flaming front of a fire. The predictive model used by McArthur was based on a combination of the Keetch Byram Drought Index, and the amount, and time since fall, of recent rain. That is the reason both indices are calculated by the same function.
Value
A numeric vector containing the (daily) KBDI (or MADF) time series
Note
The original equations of the code presented by Keetch and Byram (1968) were later corrected for two significant typographical errors affecting the index output Alexander (1990).
Author(s)
Joaquin Bedia-Jiménez
References
Keetch, J.J. and Byram, G.M. (1968) A drought index for forest fire control. USDA Forest Service.
Alexander, M.E., 1990. Computer calculation of the Keetch-Byram Drought Index - programmers beware. Fire Management Notes 51, 23–25.
Dennison, P.E., Roberts, D.A., Thorgusen, S.R., Regelbrugge, J.C., Weise, D., Christopher, L., 2003. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index. Remote Sensing of the Environment 88, 442–452.
Kerner Oceanity Index
Description
KOI analysed the oceanity assuming that marine climates have colder spring months in comparison with the autum months.
Usage
koi(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
KOI = \frac {100(TGo-TGa)}{Thm-Tcm}
TGo = Average temperature of October TGa = Average temperature of April Thm = Average temperature of the hottest month (Celsius); Tcm = Average temperature of the coldest month (Celsius)
References
Zambakas J. 1992.General Climatology. Department of Geology,National & Kapodistrian University of Athens, Athens. Gavilan RG. 2005. The use of climatic parameters and indices in vege-tation distribution. A case study in the Spanish System Central.Int. J.Biometeorol.50: 111–120.
Examples
data(data_all)
koi(data = data_all$tg)
Date of last permanent snow cover
Description
Last day of the longest period with consecutive snow cover day (day of the hydrological year).
Usage
lpsc(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
date
Examples
data(data_all)
lpsc(data = data_all$snowdepth)
De Martonne aridity index
Description
De Martonne aridity index is the ratio between the annual amount of precipitation and anual mean of temperature plus 10 Celsius.
Usage
mai(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
Arguments
pr |
daily precipitation, mm |
taverage |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
MAI = \frac{P} {TG+10}
P = annual precipitation (mm); TG = mean annual air temperature (Celsius)
References
De Martonne E., 1926. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorologie, 449-458.
Examples
data(data_all)
mai(pr = data_all$rr, taverage = data_all$tg)
max with na.rm TRUE
Description
max with na.rm TRUE
Usage
maxf(..., na.rm = TRUE)
Arguments
... |
... |
na.rm |
na.rm |
Value
max
Maximum temperature
Description
Maximum temperature
Usage
maximum_temp(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
maximum, minimum or medium temperature |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
maximum temperature
mean with na.rm TRUE
Description
mean with na.rm TRUE
Usage
meanf(..., na.rm = TRUE)
Arguments
... |
... |
na.rm |
na.rm |
Value
mean
Modified Fournier Index
Description
The precipitation concentration index is frequently associated to erosion risk. Values: 0-60 very low; 60-90 Low; 90-120 moderate; 120-160 high; > 160 very high.
Usage
mfi(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
MFI = \sum_{i=1}^{12} \frac{P_i ^ 2} {P_t}
References
Fournier F. 1960. Climat et Erosion. PUF: Paris. Arnoldus HM. 1980. An approximation of the rainfall factor in the Uni-versal Soil Loss Equation. In Assessments of Erosion, de Boodts M,Gabriels D (eds). John Wiley and Sons Ltd, Chichester 127–132. De Luis M., González-Hidalgo J.C., Longares L.A. Is rainfal erosivity increasing in the Mediterranean Iberian Peninsula?. Land Degradation & Development, 21: 139-144.
Examples
data(data_all)
mfi(data = data_all$rr)
Mould index
Description
Number of days with a relative humidity over 90
Usage
mi(taverage, rh, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
taverage |
daily mean temperature, Celsius |
rh |
relative humidity, percentage |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
mi(taverage = data_all$tg, rh = data_all$humidity)
min with na.rm TRUE
Description
min with na.rm TRUE
Usage
minf(..., na.rm = TRUE)
Arguments
... |
... |
na.rm |
na.rm |
Value
min
Minimum temperature
Description
Minimum temperature
Usage
minimum_temp(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
maximum, minimum or medium temperature |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
minimum temperature
Marsz Oceanity Index
Description
The annual range of monthly mean air temperatures grados
Usage
moi(data, lat, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
lat |
latitude, degree |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
MOI=\frac {0.731 \phi +1.767}{Thm-Tcm}
Phi = geographical latitude; Thm = Average temperature of the hottest month (Celsius); Tcm = Average temperature of the coldest month (Celsius)
References
Marsz A, Rakusa-Suszczewskis S. 1987. Charakterystyka ekologiczna rejonu Zatoki Admiralicji (King George Island, SouthShetland Islands). 1. Klimat i obszary wolne od lodu.Kosmos36:103–127.
Examples
data(data_all)
moi(data = data_all$tg, lat = data_all$lat)
Select quarter days
Description
Select quarter days
Usage
months_quarter(functionValues, selectFunction, selectValues, na.rm = FALSE)
Arguments
functionValues |
functionValues |
selectFunction |
selectFunction |
selectValues |
selectValues |
na.rm |
na.rm |
Value
quarter days
Months by years
Description
Months by years
Usage
months_years(time)
Arguments
time |
chron |
Value
months by years
Maximum snow depth
Description
Maximum snow depth (m)
Usage
ms(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
snow depth, m
Examples
data(data_all)
ms(data = data_all$snowdepth)
Mild snowy days
Description
Number of days with snow depth > 5 cm.
Usage
msd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
msd(data = data_all$snowdepth)
Nesterov Index
Description
Implementation of the Nesterov Index for fire danger estimation
Usage
nesterovIndex(t, rh, p, modified = FALSE)
Arguments
t |
Temperature |
rh |
Relative humidity |
p |
Precipitation |
modified |
Logical flag indicating wheter to use the classical index definition (default) or the modified version (see Details) |
Details
The Nesterov Index (NI) was developed in former Soviet Union as an empirical function reflecting the relationship between observed weather conditions and fire occurrence, defined as follows:
NI=\sum_{\forall p_i\leq 3mm}^i T_i(T_i-Td_i)
where T
is midday temperature and Td
is the dewpoint temperature at that moment, calculated from relative humidity and T
.
NI is a cumulative index, but summation is performed for those days when the daily precipitation (p
) does not exceed 3 mm.
At p >3 mm
, the NI value is reset to zero. Usually, the values from NI are divided into five ranges to provide an
estimate of fire danger potential. Conditions with NI<300
(regime I) are not considered hazardous.
Conditions in the ranges 300-1000, 1000-4000, 4000-10000, and above 10000 are considered regimes with low (II), moderate (III), high (IV),
and extreme (V) level of fire hazard.
Previous studies reveal that NI may be unstable in some cases, and a modification on this index has been proposed by introducing to its values a K scale coefficient, in the range 0-1, accounting for the amount of precipitation and previous dryness in a more detailed way than the original NI equation. Details on the values of K are provided by Groisman et al. 2007. @references
Groisman, P.Y., Sherstyukov, B.G., Razuvaev, V.N., Knight, R.W., Enloe, J.G., Stroumentova, N.S., Whitfield, P.H., Forland, E., Hannsen-Bauer, I., Tuomenvirta, H., Aleksandersson, H., Mescherskaya, A.V., Karl, T.R., 2007. Potential forest fire danger over Northern Eurasia: Changes during the 20th century. Global and Planetary Change 56, 371–386.
Holsten, A., Dominic, A.R., Costa, L., Kropp, J.P., 2013. Evaluation of the performance of meteorological forest fire indices for German federal states. Forest Ecology and Management 287, 123–131.
@author Joaquin Bedia-Jiménez
Value
A vector of (daily) NI data
Non-growing season precipitation
Description
Total precipitation from October to April
Usage
ngsr(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
precipitation, mm
Examples
data(data_all)
ngsr(data = data_all$rr)
Select no empty parameters
Description
Select no empty parameters
Usage
no_null(data)
Arguments
data |
data list |
Value
no empty parameter
Minimum TG
Description
Minimum value of daily mean air temperature
Usage
ntg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
Average temperature
Examples
data(data_all)
ntg(data=data_all$tg)
Onset of growing season 10 days
Description
Date of the start of the first span with at least 10 days with TG > 5 Celsius
Usage
ogs10(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
date
Examples
data(data_all)
ogs10(data=data_all$tg)
Onset of growing season 6 days
Description
Date of the start of the first span with at least 6 days with TG >5 Celsius
Usage
ogs6(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
date
Examples
data(data_all)
ogs6(data=data_all$tg)
Precipitation Concentration Index
Description
Index to evaluate precipitation heterogeneity at a monthly scale. Values <10 (uniform monthly rainfall distribution); values 11-15 (moderate concentration of precipitation); values 16-20 (irregular distribution); and >20 ((high precipitation concentration)
Usage
pci(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
PCI = \frac{\sum_{i=1}^{12} P_i ^ 2} {(P_t) ^ 2} * 100
References
Oliver, J.E. (1980) Monthly precipitation distribution: a comparative index. Professional Geographer, 32, 300–309
Examples
data(data_all)
pci(data = data_all$rr)
FAO-56 Penman-Monteith reference evapotranspiration (ET_0)
Description
FAO-56 Penman-Monteith reference evapotranspiration (ET_0)
Usage
penman_fao_diario(
Tmin,
Tmax,
U2,
J,
Ra = NA,
lat = NA,
Rs = NA,
tsun = NA,
CC = NA,
ed = NA,
Tdew = NA,
RH = NA,
P = NA,
P0 = NA,
z = NA,
crop = "short",
na.rm = FALSE
)
Arguments
Tmin |
minimum temperature, Celsius |
Tmax |
maximum temperature, Celsius |
U2 |
average wind, m/s at 2m |
J |
day of the year |
Ra |
radiation, (MJ m-2 d-1) |
lat |
latitude, degrees, CRS('+proj=longlat +ellps=WGS84 +datum=WGS84') |
Rs |
daily incoming solar radiation (MJ m-2 d-1) |
tsun |
sunshine duration, hours |
CC |
CC |
ed |
actual vapour pressure |
Tdew |
dew point, Celsius |
RH |
relative humidity, percentage |
P |
atmospheric pressure, kPa |
P0 |
P0 |
z |
mde |
crop |
"short" short reference crop or "tail" tail reference crop |
na.rm |
na.rm |
Value
et0, mm/day
Transforma datos de in en r o al revés
Description
Transforma datos de in en r o al revés
Usage
penman_rs(J, lat = NA, tsun = NA, z = NA, ret = RADIATION)
Arguments
J |
Días de inicio de cada semana del año, partiendo desde 0 ¿? |
lat |
latitud en grados en spTransform(coordenadas,CRS(crslonlat)) |
tsun |
Insolación en horas de sol o radiación en ¿MJ/m2? |
z |
mde, modelo de elevación digital del terreno |
ret |
Que hacer, calcular in desde r o al contrario |
Value
insolación en horas de sol o radiación en ¿MJ/m2?
Pinna Combinative Index
Description
Pinna combinative index is an aridity–humidity index
Usage
pici(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
Arguments
pr |
daily precipitation, mm |
taverage |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
Formula
PICI = \frac {1}{2} \left(\frac{P}{TG+10}+\frac{12Pdm}{TGdm+10}\right)
P = annual precipitation (mm); TG = annual mean temperature (Celsius); Pdm= precipitation of the driest month; TGdm= temperature of the driest month
References
Zambakas J. 1992. General Climatology. Department of Geology, National & Kapodistrian University of Athens: Athens, Greece.
Examples
data(data_all)
pici(pr = data_all$rr, taverage = data_all$tg)
Total precipitation wet days
Description
Precipitation amount on days with RR >= 1 mm
Usage
prcptot(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
precipitation, mm
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
prcptot(data = data_all$rr)
Sums positive
Description
Sums of positive TG calculated for the 1st of February to the 10th April interval
Usage
ptg(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
Examples
data(data_all)
ptg(data = data_all$tg)
quantile null
Description
quantile null
Usage
quantile_null(x, ...)
Arguments
x |
x |
... |
... |
Value
operation
Days precipitation >= R10mm
Description
Days with daily precipitation amount >= 10mm
Usage
r10mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
r10mm(data = data_all$rr)
Days precipitation >= R20mm
Description
Days with daily precipitation amount >= 20mm
Usage
r20mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
r20mm(data = data_all$rr)
Percentage precipitation of very wet days
Description
Precipitation at days exceeding the 95th percentile divided by total precipitation expressed in percentage. The 95th percentile is computed based on the time scale selected (month, season or year) not daily.
Usage
r95tot(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
precipitation, mm
Examples
data(data_all)
r95tot(data = data_all$rr, time.scale="month")
Precipitation fraction extremely wet days
Description
Precipitation at days exceeding the 99th percentile divided by total precipitation expressed in percentage, The 99th percentile is computed based on the time scale selected (month, season or year) not daily
Usage
r99tot(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
precipitation, mm
Examples
data(data_all)
r99tot(data = data_all$rr)
Transforma radiancia en insolación
Description
Transforma radiancia en insolación
Usage
r_to_in(radiation, lat, mde)
Arguments
radiation |
radiation |
lat |
lat |
mde |
mde |
Value
insolación en horas
Total precipitation
Description
Total amounts of precipitation
Usage
rti(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
precipitation, mm
Examples
data(data_all)
rti(data = data_all$rr)
Maximum precipitation
Description
The highest amount of daily precipitation
Usage
rx1day(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
precipitation, mm
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
rx1day(data = data_all$rr)
Maximum 5 days R
Description
Maximum consecutive 5-day precipitation
Usage
rx5d(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
precipitation, mm
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
rx5d(data = data_all$rr)
Scales allow
Description
Scales allow
Usage
scale_name(name)
Arguments
name |
function name |
Value
scales allow
Number of snow covered days
Description
Number of snow covered days (snow depth > 0)
Usage
scd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
scd(data = data_all$snowdepth)
Snow depth 1-10
Description
Number of days with snow depth in the range 1-10 cm
Usage
sd0_10(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
sd0_10(data = data_all$snowdepth)
Snow depth 10-20
Description
The number of days with snow depth of 10-20 cm
Usage
sd10_20(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snow depth, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
sd10_20(data = data_all$snowdepth)
Simple precipitation intensity index
Description
Sum of precipitation in wet days (days with >1mm of precipitation), and dividing that by the number of wet days in the period.
Usage
sdii(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
precipitation, mm
References
Michele Brunetti, Maurizio Maugerib, Teresa Nanni, (2001) Changes in total precipitation, rainy days and extreme events in northeastern Italy, International Journal of Climatology
Examples
data(data_all)
sdii(data = data_all$rr)
Seasonals
Description
Seasonals
Usage
seasonals(time)
Arguments
time |
chron |
Value
seasonals
Seasonals by years
Description
Seasonals by years
Usage
seasonals_years(time)
Arguments
time |
chron |
Value
seasonals by years
Function to select all "time" data
Description
Function to select all "time" data
Usage
select_all_time_function(time.scale)
Arguments
time.scale |
month, season or year |
Value
function
Function to select data
Description
Function to select data
Usage
select_time_function(time.scale)
Arguments
time.scale |
month, season or year |
Value
function
Name data station or month
Description
Name data station or month
Usage
select_value_for_data(data, value, time.scale)
Arguments
data |
data |
value |
value for month, season or year |
time.scale |
month, season or year |
Value
function
Sunny days
Description
Days with mean cloud cover less than 10
Usage
snd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
cloud cover, percentage |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
snd(data = data_all$cloud)
Standardised Precipitation-Evapotranspiration Index 1
Description
Standardized precipitation-evapotranspiration index calculated at 1-month time scale
Usage
spei1(eto, pr, data_names = NULL, na.rm = FALSE, ...)
Arguments
eto |
evapotranspiration, mm |
pr |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCLI2909.1, 2010.
Examples
data(data_all)
spei1(eto = data_all$eto, pr = data_all$rr, na.rm = TRUE)
Standardised Precipitation-Evapotranspiration Index 12
Description
Standardized precipitation-evapotranspiration index calculated at 12-month time scale
Usage
spei12(eto, pr, data_names = NULL, na.rm = FALSE, ...)
Arguments
eto |
evapotranspiration, mm |
pr |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCLI2909.1, 2010.
Examples
data(data_all)
spei12(eto = data_all$eto, pr = data_all$rr)
Standardised Precipitation-Evapotranspiration Index 3
Description
Standardized precipitation-evapotranspiration index calculated at 3-month time scale
Usage
spei3(eto, pr, data_names = NULL, na.rm = FALSE, ...)
Arguments
eto |
evapotranspiration, mm |
pr |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCLI2909.1, 2010.
Examples
data(data_all)
spei3(eto = data_all$eto, pr = data_all$rr)
Standardised Precipitation-Evapotranspiration Index 6
Description
Standardized precipitation-evapotranspiration index calculated at 6-month time scale
Usage
spei6(eto, pr, data_names = NULL, na.rm = FALSE, ...)
Arguments
eto |
evapotranspiration, mm |
pr |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCLI2909.1, 2010.
Examples
data(data_all)
spei6(eto = data_all$eto, pr = data_all$rr)
Standardized precipitation index 1
Description
Standardized precipitation index calculated at 1-month time scale
Usage
spi1(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.
Examples
data(data_all)
spi1(data = data_all$rr)
Standardized precipitation index 12
Description
Standardized precipitation index calculated at 12-month time scale
Usage
spi12(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.
Examples
data(data_all)
spi12(data = data_all$rr)
Standardized precipitation index 3
Description
Standardized precipitation index calculated at 3-month time scale
Usage
spi3(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.
Examples
data(data_all)
spi3(data = data_all$rr)
Standardized precipitation index 6
Description
Standardized precipitation index calculated at 6-month time scale
Usage
spi6(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily precipitation, mm |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
index value
References
McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.
Examples
data(data_all)
spi6(data = data_all$rr)
Snowfall sum
Description
Sum of snowfall
Usage
ss(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
snowfall, mm of water equivalent |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
snow, mm
Examples
data(data_all)
ss(data = data_all$snowfallmm)
Sum of sunshine duration
Description
Sum of sunshine duration (hours)
Usage
ssd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
insolation, hours of sun |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
hours of sun
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
ssd(data = data_all$insolation)
Sunshine duration percentage
Description
Sunshine duration fraction with respect to day length (
Usage
ssp(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
insolation, hours of sun |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
percentage
Formula
SSP = \frac{SS} {SSmax} * 100
SS: sum of sunshine duration (h); SSmax: maximun daylight (h)
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
ssp(data = data_all$insolation)
Sums TN-10
Description
Sum of degree days when TN <=-10 Celsius recorded in December-February interval
Usage
stn10(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
Examples
data(data_all)
stn10(data = data_all$tn)
Sums TN-15
Description
Sum of degree days when TN <= -15 Celsius recorded in December-February interval
Usage
stn15(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
Examples
data(data_all)
stn15(data = data_all$tn)
Sums TX32
Description
Sum of degree days when TX >= 32 Celsius on the interval June-August. The 32 celsius limit is the critical biological threshold for the maximum air temperature from which the physiological optimal growth and development of wheat and maize plants.
Usage
stx32(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
Examples
data(data_all)
stx32(data = data_all$tx)
Summer days
Description
Number of days with daily maximum temperature > 25 Celsius.
Usage
su(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
su(data=data_all$tx)
sum with na.rm TRUE
Description
sum with na.rm TRUE
Usage
sumf(..., na.rm = TRUE)
Arguments
... |
... |
na.rm |
na.rm |
Value
sum
Growing season (Apr-Oct)
Description
Growing season (april to october) mean TG
Usage
ta_o(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
Examples
data(data_all)
ta_o(data=data_all$tg)
Dew point to relative humidity
Description
Dew point to relative humidity
Usage
td_to_rh(tmax, tmin, td)
Arguments
tmax |
maximum temperature |
tmin |
daily minimum temperature, Celsius |
td |
dew point |
Value
rh
Dew point to water vapour pressure
Description
Dew point to water vapour pressure
Usage
td_to_vapor(td)
Arguments
td |
dew point |
Value
vapor
Growing season(May-Sep)
Description
Growing season (may to september) mean TG
Usage
tm_s(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
Examples
data(data_all)
tm_s(data=data_all$tg)
Percentage of cold nights
Description
Percentages of days with TN lower than the 10th percentile. The 10th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.
Usage
tn10p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
percentage
Formula
cn = \frac{No. days TN < 10p} {No. days} * 100
Examples
data(data_all)
tn10p(data=data_all$tn)
Warm nights
Description
Percentages of days with TN higher than the 90th percentile. The 90th percentile is computed based on the time scale selected (month, season or year) not daily.
Usage
tn90p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
tn90p(data=data_all$tn)
Minimum TN
Description
Minimum of daily minimum air temperature
Usage
tnn(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf
Examples
data(data_all)
tnn(data=data_all$tn)
Maximum TN
Description
Maximum of daily minimum air temperature
Usage
tnx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf
Examples
data(data_all)
tnx(data=data_all$tn)
Tropical nights
Description
Number of days with TN > 20 Celsius.
Usage
tr(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.
Examples
data(data_all)
tr(data=data_all$tn)
Percentage of cold days
Description
Percentages of days with TX lower than the 10th percentile. The 10th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.
Usage
tx10p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
percentage
Formula
cd = \frac{No. days TX < 10p} {No. days} * 100
Examples
data(data_all)
tx10p(data=data_all$tx)
Warm days
Description
Total numbers of days with TX higher than the 90th percentile. The 90th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.
Usage
tx90p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
tx90p(data=data_all$tx)
Minimum TX
Description
Minimum of daily maximum air temperature
Usage
txn(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf
Examples
data(data_all)
txn(data=data_all$tx)
Maximum TX
Description
Maximum of daily maximum air temperature
Usage
txx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
References
Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf
Examples
data(data_all)
txx(data=data_all$tx)
UNEP Aridity Index
Description
P/Eto
Usage
uai(eto, pr, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
eto |
evapotranspiration, mm |
pr |
daily precipitation, mm |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
index value
References
Huiping Huang, Yuping Han, Mingming Cao, Jinxi Song, and Heng Xiao Spatial-Temporal Variation of Aridity Index of China during 1960–2013. Advances in Meteorology, vol. 2016, Article ID 1536135, 10 pages, 2016. doi: 10.1155/2016/1536135
Examples
data(data_all)
uai(eto = data_all$eto, pr = data_all$rr)
Universal Thermal Climate Index
Description
The Universal Thermal Climate is defined as the air temperature of the reference condition causing the same model response as actual conditions. The deviation of UTCI from air temperature, depends on the values of air and mean radiant temperature), wind speed and humidity.
Usage
utci(
taverage,
rh,
w,
tmrt,
data_names = NULL,
time.scale = YEAR,
na.rm = FALSE
)
Arguments
taverage |
daily mean temperature, Celsius |
rh |
relative humidity, percentage |
w |
average wind, m/s |
tmrt |
radiation temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
index value
References
Blazejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y., Psikuta, A.; Kampmann, B. 2013. An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86 (1), pp.5-10. http://www.utci.org/
Examples
data(data_all)
utci(ta = data_all$tg, rh = data_all$humidity, w = data_all$wind,
tmrt = data_all$radiationtemperature)
Very cold days
Description
Days with TN <1st percentile. The 1th percentile is computed based on the time scale selected (month, season or year).
Usage
vcd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
vcd(data=data_all$tn)
Mean daily difference DTR
Description
Mean absolute day-to-day difference in DTR
Usage
vdtr(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
tmax |
daily maximum temperature, Celsius |
tmin |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
temperature, Celsius
Formula
vDTR_j = \frac{ \sum_{ i = 1 } ^ { I } \mid ( TX_{ ij } - TN_{ ij } ) - ( TX_{i-1,j} -TN_{ i - 1,j }) \mid } {I}
References
European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php
Examples
data(data_all)
vdtr(tmax=data_all$tx, tmin=data_all$tn)
Very warm days
Description
Days with TX >99th percentile per year. The 99th percentile is computed based on the time scale selected (month, season or year).
Usage
vwd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
vwd(data=data_all$tx)
Wind chill index
Description
Wind chill index is the lowering of body temperature due to the passing-flow of lower-temperature air. It combines air temperature and wind speed.
Usage
wci(taverage, w, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
taverage |
daily mean temperature, Celsius |
w |
average wind, m/s |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
index value
Formula
WCI = 13.12 + 0.6215 * TG - 11.37 * v ^ {+ 0.16} + 0.3965 * TG * v ^ {+ 0.16}
Where TG in celsius and v is wind speed in Km/h
References
Osczevski, Randall; Bluestein, Maurice (2005). The new wind chill equivalent temperature chart. Bulletin of the American Meteorological Society. 86 (10): 1453–1458
Examples
data(data_all)
wci(taverage = data_all$tg, w = data_all$wind)
which with arr.ind TRUE
Description
which with arr.ind TRUE
Usage
whichf(x, arr.ind = TRUE, useNames = TRUE)
Arguments
x |
x |
arr.ind |
na.rm |
useNames |
na.rm |
Value
which
Winkler index
Description
Sum of degree days over 10 celsius of TG from April 1 until October 31
Usage
wki(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
References
Winkler, A.J., J.A. Cook, W.M. Kliewer, and L.A. Lider. 1974. General Viticulture. 4th ed. University of California Press, Berkeley.
Examples
data(data_all)
wki(data = data_all$tg)
Winter Severity
Description
Mean TG of the coldest month of the year
Usage
ws(data, data_names = NULL, na.rm = FALSE, ...)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
na.rm |
logical. Should missing values (including NaN) be removed? |
... |
further arguments passed to or from other methods |
Value
temperature, Celsius
Examples
data(data_all)
ws(data = data_all$tg)
Warm spell duration
Description
Number of days which are part of groups of at least 6 consecutive days when TX > 90th percentile. The 90th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.
Usage
wsdi(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily maximum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
wsdi(data=data_all$tx)
Maximum TG
Description
Maximum of daily mean air temperature
Usage
xtg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
data |
daily mean temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
Average temperature
Examples
data(data_all)
xtg(data=data_all$tg)
Zero crossing days
Description
Number of days with TX > 0 Celsius and TN < 0 Celsius.
Usage
zcd(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
Arguments
tmax |
daily maximum temperature, Celsius |
tmin |
daily minimum temperature, Celsius |
data_names |
names of each period of time |
time.scale |
month, season or year |
na.rm |
logical. Should missing values (including NaN) be removed? |
Value
days
Examples
data(data_all)
zcd(tmax=data_all$tx, tmin=data_all$tn)