Package 'CREAM'

July 21, 2025

Type Package

Title Clustering of Genomic Regions Analysis Method

Version 1.1.1 **Date** 2018-05-30

Description Provides a new method for identification of clusters of genomic regions within chromosomes. Primarily, it is used for calling clusters of cis-regulatory elements (COREs). 'CREAM' uses genome-wide maps of genomic regions in the tissue or cell type of interest, such as those generated from chromatin-based assays including DNaseI, ATAC or ChIP-Seq. 'CREAM' considers proximity of the elements within chromosomes of a given sample to identify COREs in the following steps:

1) It identifies window size or the maximum allowed distance between the elements within each CORE, 2) It identifies number of elements which should be clustered as a CORE, 3) It calls COREs, 4) It filters the COREs with lowest order which does not pass the threshold considered in the approach.

License GPL (>= 3) Imports stats, utils Depends R (>= 3.3)

URL https://github.com/bhklab/CREAM

Suggests testthat RoxygenNote 6.0.1 LazyData true

biocViews PeakDetection, FunctionalPrediction, BiomedicalInformatics, Clustering

BugReports https://github.com/bhklab/CREAM/issues

Encoding UTF-8

NeedsCompilation no

Author Seyed Ali Madani Tonekaboni [aut], Victor Kofia [aut], Mathieu Lupien [aut], Benjamin Haibe-Kains [aut, cre] 2 CREAM

Maintainer Benjamin Haibe-Kains

benjamin.haibe.kains@utoronto.ca>

Repository CRAN

Date/Publication 2018-06-06 09:07:56 UTC

Contents

	CREAM																												2
	ElementRecog																												3
	PeakMinFilt																												4
,	WindowSizeRecog																												4
,	WindowVec																												5
Index																													7
CREAM		CRI	EΑl	M	is 1	he	m	air	ı fi	un	ct	ioi	n f	or	C	0.	RI	Ξi	de	nt	ifi	ca	tic	on					

Description

CREAM is the main function for CORE identification

Usage

```
CREAM(in_path, WScutoff = 1.5, MinLength = 1000, peakNumMin = 2)
```

Arguments

in_path	Path to the input file (The file inclusing the functional regions) Note. You have to make sure that there is no overlapping regions within the input file
WScutoff	Threshold used to identify WS within distribution of maximum distance between peaks for each order of CORE
MinLength	Criteria for the minimum number of functional regions in the input file
peakNumMin	Minimum number of peaks for CORE identification

Value

Bed file including the identified COREs

Examples

```
CREAM(system.file("extdata", "A549_Chr21.bed", package = "CREAM"),
MinLength = 1000, peakNumMin = 2)
```

ElementRecog 3

E.	lan	or	+1	20	coa
	і еп	ı	11.1	$\tau \mapsto$	(1)

ElementRecog is a function to identify COREs

Description

ElementRecog is a function to identify COREs

Usage

```
ElementRecog(InputData, windowSize_Vec, peakNumMax, peakNumMin)
```

Arguments

InputData The input data as a table including chromosome regions in which the first col-

umn is chromosome annotation, and second and third columns are start and

ending positions.

windowSize_Vec Vector of window sizes ordered based on order of CORE

peakNumMax Maximum order of COREs (e.g. maximum number of peaks within COREs)

peakNumMin Minimum order of COREs (e.g. minimum number of peaks within COREs)

Value

Identified COREs for the given input regions

Examples

```
InputData <- read.table(system.file("extdata", "A549_Chr21.bed",
package = "CREAM"), sep="\t")
colnames(InputData) <- c("chr", "start", "end")
MinLength <- 1000
if(nrow(InputData) < MinLength){
   stop(paste( "Number of functional regions is less than ", MinLength,
   ".", sep = "", collapse = ""))
}
peakNumMin <- 2
WScutoff <- 1.5
WindowVecFinal <- WindowVec(InputData, peakNumMin, WScutoff)
OutputList <- ElementRecog(InputData, WindowVecFinal,
   (1+length(WindowVecFinal)), peakNumMin)</pre>
```

4 WindowSizeRecog

PeakMinFilt	PeakMinFilt is a function to filter the lowest Order of COREs which distance between functional regions is close to the corresponding Window Size
	dow Size

Description

PeakMinFilt is a function to filter the lowest Order of COREs which distance between functional regions is close to the corresponding Window Size

Usage

```
PeakMinFilt(Clusters_init, WindowVecFinal)
```

Arguments

Clusters_init Table of indetified COREs before filteration

WindowVecFinal Vector of window sizes ordered based on order of CORE

Value

Minimum order of COREs

WindowSizeRecog is of COREs	a function to specify window size for each order
-----------------------------	--

Description

WindowSizeRecog is a function to specify window size for each order of COREs

Usage

```
WindowSizeRecog(InputData, COREorder, WScutoff)
```

Arguments

InputData	The input data as a table including chromosome regions in which the first col- umn is chromosome annotation, and second and third columns are start and ending positions.
COREorder	Order of the COREs which window size has to be determined for.
WScutoff	Threshold used to identify WS within distribution of maximum distance between peaks for each order of CORE

Window Vec 5

Value

Window size identified for each order of CORE

Examples

```
InputData <- read.table(system.file("extdata", "A549_Chr21.bed",
package = "CREAM"), sep="\t")
colnames(InputData) <- c("chr", "start", "end")
MinLength <- 1000
if(nrow(InputData) < MinLength){
   stop(paste( "Number of functional regions is less than ", MinLength,
   ".", sep = "", collapse = ""))
}
peakNumMin <- 2
WScutoff <- 1.5
WindowSize <- WindowSizeRecog(InputData, peakNumMin, WScutoff)</pre>
```

WindowVec

WindowVec is a function to specify window size for each order of COREs

Description

Window Vec is a function to specify window size for each order of COREs

Usage

```
WindowVec(InputData, peakNumMin, WScutoff)
```

Arguments

InputData The input data as a table including chromosome regions in which the first col-

umn is chromosome annotation, and second and third columns are start and

ending positions.

peakNumMin Minimum order of COREs

WScutoff Threshold used to identify WS within distribution of maximum distance be-

tween peaks for each order of CORE

Value

Vector of window sizes from order 2 up to maximum order of COREs

WindowVec WindowVec

Examples

```
InputData <- read.table(system.file("extdata", "A549_Chr21.bed",
package = "CREAM"), sep="\t")
colnames(InputData) <- c("chr", "start", "end")
MinLength <- 1000
if(nrow(InputData) < MinLength){
   stop(paste( "Number of functional regions is less than ", MinLength,
   ".", sep = "", collapse = ""))
}
peakNumMin <- 2
WScutoff <- 1.5
WindowVecFinal <- WindowVec(InputData, peakNumMin, WScutoff)</pre>
```

Index

```
CREAM, 2
ElementRecog, 3
PeakMinFilt, 4
WindowSizeRecog, 4
WindowVec, 5
```