Type: | Package |
Title: | Cross-Entropy R Package for Optimization |
Version: | 1.3 |
Date: | 2023-10-04 |
Author: | Tim Benham and Qibin Duan and Dirk P. Kroese and Benoit Liquet |
Maintainer: | Benoit Liquet <b.liquet@uq.edu.au> |
Depends: | MASS, msm, stats, sna |
Description: | Optimization solver based on the Cross-Entropy method. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)] |
NeedsCompilation: | no |
Packaged: | 2023-10-04 00:03:48 UTC; liquet |
Repository: | CRAN |
Date/Publication: | 2023-10-04 04:00:02 UTC |
Cross-Entropy R package for optimization
Description
The CEoptim package provides an optimization solver based on
the Cross-Entropy method.
The main function CEoptim
can be used to solve
multi-extremal optimization problems involving discrete, continuous,
and mixed variables. In addition,
CEoptim
implements linear constraints for continuous optimization.
Author(s)
Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet <b.liquet@uq.edu.au>
References
Benham T., Duan Q., Kroese D.P., Liquet B. (2017) CEoptim: Cross-Entropy R package for optimization. Journal of Statistical Software, 76(8), 1-29.
See Also
Cross-Entropy optimizer
Description
CEopt
is an optimization function based on the Cross-Entropy method
Usage
CEoptim(f, f.arg=NULL, maximize=FALSE, continuous=NULL, discrete=NULL,
N=100L, rho=0.1, iterThr=1e4L, noImproveThr=5, verbose=FALSE)
Arguments
f |
Function to be optimized. Can have continuous and discrete arguments |
f.arg |
List of additional fixed arguments passed to function f. |
maximize |
Logical value determining whether to maximize or minimize the objective function |
continuous |
List of arguments for the continuous optimization part consisting of: |
-
mean
Vector of initial means. -
sd
Vector of initial standard deviations. -
smoothMean
Smoothing parameter for the vector of means. Default value 1 (no smoothing). -
smoothSd
Smoothing parameter for the standard deviations. Default value 1 (no smoothing). -
sdThr
Positive numeric convergence threshold. Check whether the maximum standard deviation is smaller thansdThr
. Default value 0.001. -
conMat
Coefficient matrix of linear constraintconMat
x \le
conVec
. -
conVec
Value vector of linear constraintconMat
x \le
conVec
.
discrete |
List of arguments for the discrete optimization part, consisting of: |
-
categories
Integer vector which defines the allowed values of the categorical variables. Thei
th categorical variable takes values in the set {0,1,...,categories(i)
-1}. -
probs
List of initial probabilities for the categorical variables. Defaults to equal (uniform) probabilities. -
smoothProb
Smoothing parameter for the probabilities of the categorical sampling distribution. Default value 1 (no smoothing). -
ProbThr
Positive numeric convergence threshold. Check whether all probabilities in the categorical sampling distributions deviate less thanProbThr
from either 0 or 1. Default value 0.001.
N |
Integer representing the CE sample size. |
rho |
Value between 0 and 1 representing the elite proportion. |
iterThr |
Termination threshold on the largest number of iterations. |
noImproveThr |
Termination threshold on the largest number of iterations during which no improvement of the best function value is found. |
verbose |
Logical value set for CE progress output. |
Value
CEoptim
returns an object of class "CEoptim" which is a list with the following components.
optimum Optimal value of
f
.optimizer List of the location of the optimal value, consisting of:
continuous Continuous part of the optimizer.
discrete Discrete part of the optimizer.
termination List of termination information consisting of:
niter Total number of iterations upon termination.
convergence One of the following statements:
Not converged
, if the number of iterations reachesiterThr
;The optimum did not change for noImproveThr iterations
, if the best value has not improved fornoImproveThr
iterations;Variances converged
, otherwise.
states List of intermediate results computed at each iteration. It consists of the iteration number (
iter
), the best overall value (optimum
) and the worst value of the elite samples, (gammat
). The means (mean
) and maximum standard deviations (maxSd
) of the elite set are also included for continuous cases, and the maximum deviations (maxProbs
) of the sampling probabilities to either 0 or 1 are included for discrete cases.states.probs List of categorical sampling probabilities computed at each iteration. Will only be returned for discrete and mixed cases.
Note
Although partial parameter passing is allowed outside lists, it is recommended that parameters names are specified in full. Parameters inside lists have to specified completely.
Because CEoptim
is a random function it is useful to (1)
set the seed for the random number generator (for testing purposes),
and (2)
investigate the quality of the results by repeating
the optimization a number of times.
Author(s)
Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet
References
Benham T., Duan Q., Kroese D.P., Liquet B. (2017) CEoptim: Cross-Entropy R package for optimization. Journal of Statistical Software, 76(8), 1-29.
Rubinstein R.Y. and Kroese D.P. (2004). The Cross-Entropy Method. Springer, New York.
Examples
## Maximizing the Peaks Function
fun <- function(x){
return(3*(1-x[1])^2*exp(-x[1]^2 - (x[2]+1)^2)
-10*(x[1]/5-x[1]^3 - x[2]^5)*exp(-x[1]^2 - x[2]^2)
-1/3*exp(-(x[1]+1)^2 - x[2]^2))}
set.seed(1234)
mu0 <- c(-3,-3); sigma0 <- c(10,10)
res <- CEoptim(fun,continuous=list(mean=mu0, sd=sigma0), maximize=TRUE)
## To extract the Optimal value of fun
res$optimum
## To extract the location of the optimal value
res$optimizer$continuous
## print function gives the following default values
print(res)
Simulated data from FitzHugh-Nagumo differential equations
Description
The data correspond to the values V(t) of the FitzHugh-Nagumo differential equations
V'(t) = c*(V(t) - (V(t)^3)/3 + R(t))
R'(t) = -(1/c)*(V(t) - a + b*R(t))
at times 0, 0.05,..,20.0, with parameters a = 0.2, b = 0.2, c = 3 and initial conditions V(0) = -1, R(0)=1, and adding gaussian noise with standard deviation 0.5.
Usage
data(FitzHugh)
Format
A numeric vetor of length 401
References
Nagumo, J. and Arimoto, S. and Yoshizawa, S. (1962) An active pulse ransmission line simulating nerve axon, Proceedings of the IRE, 50 (10), 2061–2070.
Ramsay, J.O. and Hooker, G. and Campbell, D. and Cao J. (2007) Parameter estimation for differential equations: A generalized smoothing approach, Journal of the Royal Statistical Society, Series B 69 (5) 741–796.
Benham T., Duan Q., Kroese D.P., Liquet B. (2017) CEoptim: Cross-Entropy R package for optimization. Journal of Statistical Software, 76(8), 1-29.
Examples
## Plot the data
data(FitzHugh)
plot(FitzHugh,col="blue")
Dirichlet generator
Description
Random generation for the Dirichlet distribution
Usage
dirichletrnd(a, n)
Arguments
a |
numeric vector for the concentration parameters |
n |
number of observations |
Value
dirichletrnd generates n
random observations from a Dirichlet distribution
Author(s)
Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet
References
Kroese D.P., Taimre T., Botev Z.I. (2011), Handbook of Monte Carlo Methods, John Wiley & Sons.
Examples
## Generation from the Dirichlet distribution
## with parameter a=(1,2,3,4,5)
set.seed(12345)
a <- 1:5
n <- 10
y <- dirichletrnd(a,n)
y
Network data from Les Miserables
Description
An R implementation of Donald Knuth's social network graph describing the interaction of characters in Vicor Hugo's novel Les Miserables. Each node represents a character, and edges connect any pair of characters that coappear. The weights of the edges are the number of such coapperances.
Usage
data(lesmis)
Format
Matrix of weights (77x77)
References
Knuth, D.E. (1993) The Stanford GraphBase: A Platform for Combinatorial Computing, ACM Press: Reading MA
Benham T., Duan Q., Kroese D.P., Liquet B. (2017) CEoptim: Cross-Entropy R package for optimization. Journal of Statistical Software, 76(8), 1-29.
Examples
## Display the social network graph
data(lesmis)
gplot(lesmis,gmode="graph")
Print method for the CEoptim object
Description
Produce print
method for class "CEoptim"
Usage
## S3 method for class 'CEoptim'
print(x,...)
Arguments
x |
object of class inheriting from |
... |
additional arguments: |
Details
print
method for "CEoptim"
class,
returns by default the main description of the x
object including: optimizer
; optimum
; termination
.
To get the states
and states.probs
outputs, one should specify the corresponding argument to "TRUE".
Author(s)
Tim Benham, Qibin Duan, Dirk P. Kroese, Benoit Liquet
References
Benham T., Duan Q., Kroese D.P., Liquet B. (2017) CEoptim: Cross-Entropy R package for optimization. Journal of Statistical Software, 76(8), 1-29.
See Also
Examples
## Maximizing the Peaks Function
fun <- function(x){
return(3*(1-x[1])^2*exp(-x[1]^2 - (x[2]+1)^2)
-10*(x[1]/5-x[1]^3 - x[2]^5)*exp(-x[1]^2 - x[2]^2)
-1/3*exp(-(x[1]+1)^2 - x[2]^2))}
set.seed(1234)
mu0 <- c(-3,-3); sigma0 <- c(10,10)
res <- CEoptim(fun,continuous=list(mean=mu0, sd=sigma0), maximize=TRUE)
## Print method provides by default
## optimizer; optimum and termination.
print(res)
## To print only the Optimal value of fun
print(res,optimum=TRUE)
## To print only the location of the optimal value
print(res,optimizer=TRUE)
## To print only termination information
print(res,termination=TRUE)
Internal function used for generating truncated multivariate normal data
Description
Internal function used for generating truncated multivariate normal data
Usage
rtmvnorm (N, mu, sigma, A, b,..., rhoThr=NULL, maxSample=NULL)
Simulated cumulative data from an AR(1) model with regime switching
Description
yt represents the added value of a stock at time t, at day t=1,2,...,300; that is, the increase (which may be negative) in stock price relative to the price at time t=0.
Usage
data(yt)
Format
Numeric vector of length 300
References
Benham T., Duan Q., Kroese D.P., Liquet B. (2017) CEoptim: Cross-Entropy R package for optimization. Journal of Statistical Software, 76(8), 1-29.
Examples
## Plot the yt data
data(yt)
plot(yt,type="l",col="blue")