Package 'Blendstat'

July 21, 2025

Type Package

Title Joint Analysis of Experiments with Mixtures and Random Effects

Version 1.0.5

Date 2024-06-21

Imports MASS, lattice

Description Performs a joint analysis of experiments with mixtures and random effects, taking on a process variable represented by a covariable.

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation no

Author Paulo Cesar Ossani [aut, cre] (ORCID: <https://orcid.org/0000-0002-6617-8085>), Marcelo Angelo Cirillo [aut] (ORCID: <https://orcid.org/0000-0002-2647-439X>)

Maintainer Paulo Cesar Ossani <ossanipc@hotmail.com>

Repository CRAN

Date/Publication 2024-06-21 14:30:02 UTC

Contents

Index

Blendstat-package	2
Blend	2
DataCD	4
DataNAT	5
Plot.Blend	6
	8

1

Blendstat-package

Description

Joint analysis of experiments with mixtures and random effects, taking on a process variable represented by a covariable.

Details

Package:	Blendstat
Type:	Package
Version:	1.0.5
Date:	2024-06-21
License:	GPL(>= 2)
LazyLoad:	yes

Author(s)

Marcelo Angelo Cirillo and Paulo Cesar Ossani.

Maintainer: Paulo Cesar Ossani <ossanipc@hotmail.com>

References

Kalirajan, K. P. On the estimation of a regression model with fixed and random coefficients. *Journal of Applied Statistics*, 17(2): 237-244, 1990. doi:10.1080/757582835

Swany, P. A. V. B. *Statistical Inference in Random Coefficient Regression Models*. Amsterdam: Springer Science & Business Media, 1971. 209 p.

Blend

Joint analysis of experiments with mixtures and random effects.

Description

Joint analysis of experiments with mixtures and random effects, taking on a process variable represented by a covariable.

Usage

Blend(exp, X, Y, conc = NULL, effects = NULL)

Blend

Arguments

exp	Vector with the names of the experiments.
Х	Mixture variables (components), without the vector of the concentrations (co-variable).
Υ	Response variable.
conc	Vector with the concentrations (covariable) of the experiments.
effects	Vector of the effects of the mixtures in a reference mixture (example: centroid).

Value

MPred	Matrix with the predicted and observed values.
MCPred	Matrix with the values predicted by components.
Mexp	Matrix with the design of the experiments.
theta	Vector with the theta estimates.

Author(s)

Marcelo Angelo Cirillo

Paulo Cesar Ossani

References

Kalirajan, K. P. On the estimation of a regression model with fixed and random coefficients. *Journal of Applied Statistics*, 17(2): 237-244, 1990. doi:10.1080/757582835

Swany, P. A. V. B. *Statistical Inference in Random Coefficient Regression Models*. Amsterdam: Springer Science & Business Media, 1971. 209 p.

See Also

Plot.Blend

Examples

```
data(DataNAT) # dataset
Exp <- DataNAT[,2] # identification of experiments
X <- DataNAT[,3:6] # independent variable
Y <- DataNAT[,11] # dependent variable
# effects of the blends in a reference mixture
Effects <- rep(c(-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7),4)
Conc <- as.matrix(DataNAT[,7]) # covariate (process variable)
Res <- Blend(exp = Exp, X = X, Y = Y, conc = Conc, effects = Effects)</pre>
```

```
DataCD
```

Dataset, peeled cherry coffee.

Description

Database of coffee blends of different varieties processed via wet (peeled cherry).

Usage

data(DataCD)

Format

Database of coffee blends of different varieties processed via wet (peeled cherry). Formed by the variables: Exp (code of the experiments); CEB (specialty Bourbon Yellow coffee produced at an altitude above 1,200m); CT (roasted commercial coffee); CC (Conillon coffee); CEA (Acaia specialty coffee produced at altitude below 1,100m); Conc (concentrations at 7% and 10% (m/v) of roasted and ground coffee beans in 100 ml of water). Response variables defined by the sensorial attributes: Body, Taste, Acidity, Bitterness, Score.

References

Project yield and research entitled by "Quality of blends of specialty and non-specialty coffees of the region of the Mantiqueira Mountains - treatment of discrepant scores in tests with consumers". CNPq for their aid via grant number 304974/2015-3.

Examples

data(DataCD) # dataset
Exp <- DataCD[,2] # identification of the experiments
X <- DataCD[,3:6] # independent variables (components)</pre>

DataNAT

Y <- DataCD[,11] # dependent variable (response Bitterness) # effects o the mixtures in the reference mixture Effects <- rep(c(-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7),4) Conc <- as.matrix(DataCD[,7]) # covariable (process variable) Res <- Blend(exp = Exp, X = X, Y = Y, conc = Conc, effects = Effects) print("Predicted and observed values"); Res\$MPred print("Values predicted by components:"); Res\$MPred print("Design of the experiments:"); Res\$MExp print("Estimates of the linear model parameters:"); Res\$theta

DataNAT

Dataset, natural cherry coffee.

Description

Database of coffee blends of different varieties processed by dry via.

Usage

data(DataNAT)

Format

Database of coffee blends of different varieties processed by dry via. Formed by the variables: Exp (code of the experiments); CEB (specialty Bourbon Yellow coffee produced at an altitude above 1,200m); CT (roasted commercial coffee); CC (Conillon coffee); CEA (Acaia specialty coffee produced at altitude below 1,100m); Conc (concentrations at 7% and 10% (w/v) of roasted and ground coffee beans in 100 ml of water). Variable responses defined by sensory attributes: Body, Taste, Acidity, Bitterness, Score.

References

Project yield and research entitled by "Quality of blends of specialty and non-specialty coffees of the region of the Mantiqueira Mountains - treatment of discrepant scores in tests with consumers". CNPq for their aid via grant number 304974/2015-3.

Examples

```
data(DataNAT) # dataset
Exp <- DataNAT[,2] # identification of the experiments
X <- DataNAT[,3:6] # independent variables (components)
Y <- DataNAT[,11] # dependent variable (response Bitterness)</pre>
```

5

```
# effects o the mixtures in the reference mixture
Effects <- rep(c(-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7),4)
Conc <- as.matrix(DataNAT[,7]) # covariable (process variable)
Res <- Blend(exp = Exp, X = X, Y = Y, conc = Conc, effects = Effects)
print("Predicted and observed values"); Res$MPred
print("Values predicted by components:"); Res$MPred
print("Design of the experiments:"); Res$MExp
print("Estimates of the linear model parameters:"); Res$Theta
```

Plot.Blend Plots of the results.

Description

Plots of the results of the joint analysis of the experiments.

Usage

Arguments

BL	Data of the Blend function.
titles	Titles for the plot of the effects of the concentrations and components. If it is not defined, it assumes the default text.
posleg	 for caption in the left upper corner, for caption in the right upper corner (default), for caption in the right lower corner, for caption in the left lower corner.
xlabel	Names the X axis, if not set, assumes the default text.
ylabel	Names the Y axis, if not set, assumes the default text.
boxleg	Puts frame on the caption (default = TRUE).
color	Colorful plots (default = TRUE).
expcolor	Vector with the colors of the experiments.
casc	Cascade effect in the presentation of the plots (default = TRUE).

Value

Return several plots.

Plot.Blend

Author(s)

Marcelo Angelo Cirillo Paulo Cesar Ossani

See Also

Blend

Examples

data(DataCD) # dataset

```
Exp <- DataCD[,2] # identification of the experiments</pre>
X <- DataCD[,3:6] # independent variables (components)</pre>
Y <- DataCD[,11] # dependent variable (response Bitterness)</pre>
# effects o the mixtures in the reference mixture
Effects <- rep(c(-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7),4)
Conc <- as.matrix(DataCD[,7]) # covariable (process variable)</pre>
Res <- Blend(exp = Exp, X = X, Y = Y, conc = Conc, effects = Effects)
print("Predicted and observed values"); Res$MPred
print("Values predicted by components:"); Res$MCPred
print("Design of the experiments:"); Res$MExp
print("Estimates of the linear model parameters:"); Res$Theta
Tit <- c("Covariable (process variable)", "Variable")</pre>
Xlab = "Effects" # label of the X axis
Ylab = "Predicted values" # label of the Y axis
Plot.Blend(Res, titles = Tit, posleg = 2, xlabel = Xlab,
           ylabel = Ylab, boxleg = TRUE, color = TRUE,
           expcolor = c("goldenrod3","gray53","red2", "blue2"),
           casc = TRUE)
```

Index

* Dataset
 DataCD, 4
 DataNAT, 5
* Joint analysis
 Blend, 2
* Optimization
 Blendstat-package, 2
* Plots of the results
 Plot.Blend, 6

Blend, 2, 7 Blendstat-package, 2

DataCD,4 DataNAT,5

Plot.Blend, 3, 6