Package 'BioTIMEr'

July 21, 2025

Type Package

Title Tools to Use and Explore the 'BioTIME' Database

Version 0.2.4

Maintainer Alban Sagouis <alban.sagouis@idiv.de>

License MIT + file LICENSE

URL https://github.com/bioTIMEHub/BioTIMEr

BugReports https://github.com/bioTIMEHub/BioTIMEr/issues

Description The 'BioTIME' database was first published in 2018 and inspired ideas, questions, project and research article. To make it even more accessible, an R package was created.

The 'BioTIMEr' package provides tools designed to interact with the 'BioTIME' database. The functions provided include the 'BioTIME' recommended methods for preparing (gridding and rarefaction) time series data, a selection of standard biodiversity metrics (including species richness, numerical abundance and exponential Shannon) alongside examples on how to display change over time. It also includes a sample subset of both the query and meta data, the full versions of which are freely available on the 'BioTIME' website https://biotime.st-andrews.ac.uk/home.php.

Depends R (>= 4.3.0)

Imports dplyr, tidyr, ggplot2, vegan, dggridR (>= 3.1.0), checkmate **Suggests** maps, knitr, rmarkdown, formatR, testthat (>= 3.0.0), vdiffr

Config/testthat/edition 3

Config/testthat/parallel true

Language en-GB

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

2 BTsubset_data

Author Alban Sagouis [aut, cre] (ORCID:

```
<https://orcid.org/0000-0002-3827-1063>),
    Faye Moyes [aut] (ORCID: <a href="https://orcid.org/0000-0001-9687-0593">https://orcid.org/0000-0001-9687-0593</a>),
    Inês S. Martins [aut, rev] (ORCID:
     <a href="https://orcid.org/0000-0003-4328-7286">https://orcid.org/0000-0003-4328-7286</a>),
    Shane A. Blowes [ctb] (ORCID: <a href="https://orcid.org/0000-0001-6310-3670">https://orcid.org/0000-0001-6310-3670</a>),
    Viviana Brambilla [ctb] (ORCID:
     <a href="https://orcid.org/0000-0002-0560-4693">https://orcid.org/0000-0002-0560-4693</a>),
    Cher F. Y. Chow [ctb] (ORCID: <a href="https://orcid.org/0000-0002-1020-8409">https://orcid.org/0000-0002-1020-8409</a>),
    Ada Fontrodona-Eslava [ctb] (ORCID:
     <https://orcid.org/0000-0001-7275-7174>),
    Laura Antão [ctb, rev] (ORCID: <a href="https://orcid.org/0000-0001-6612-9366">https://orcid.org/0000-0001-6612-9366</a>),
    Jonathan M. Chase [fnd] (ORCID:
     <a href="https://orcid.org/0000-0001-5580-4303">https://orcid.org/0000-0001-5580-4303</a>),
    Maria Dornelas [fnd, cph] (ORCID:
     <https://orcid.org/0000-0003-2077-7055>),
    Anne E. Magurran [fnd] (ORCID: <a href="https://orcid.org/0000-0002-0036-2795">https://orcid.org/0000-0002-0036-2795</a>),
    European Research Council grant AdG BioTIME 250189 [fnd],
    European Research Council grant PoC BioCHANGE 727440 [fnd],
    European Research Council grant AdG MetaCHANGE 101098020 [fnd],
    The Leverhulme Centre for Anthropocene Biodiversity grant RC-2018-021
     [fnd]
Repository CRAN
Date/Publication 2025-06-06 15:00:02 UTC
Contents
       Index
                                                                            12
                       BioTIME subset
 BTsubset_data
```

Description

A subset of data from BioTIME temporal surveys.

BTsubset_meta 3

Usage

BTsubset_data

Format

'BTsubset_data' A data frame with 81,084 rows and 17 columns:

ID_ALL_RAW_DATA Unique BioTIME identifier for record

ABUNDANCE Double representing the abundance for the record (see metadata for details of ABUNDANCE_TYPE

BIOMASS Double representing the biomass for the record (see metadata for details of BIOMASS_TYPE

ID_SPECIES Unique identifier linking to the species table

SAMPLE_DESC Concatenation of variables comprising unique sampling event

LATITUDE Latitude of record

LONGITUDE Longitude of record

DEPTH Depth or elevation of record if available

DAY Numerical day of record

MONTH Numerical value of month for record, i.e. January=1

YEAR Year of record

STUDY_ID BioTIME study unique identifier

newID Validated species identifier key

valid_name Highest taxonomic resolution of individual, preferred is genus and species

resolution Level of resolution, i.e. 'species' represented by genus and species

taxon Higher level taxonomic grouping, i.e. Fish

Source

https://biotime.st-andrews.ac.uk/download.php

BTsubset_meta

BioTIME subset metadata

Description

A subset of the metadata from BioTIME

Usage

BTsubset_meta

4 BTsubset_meta

Format

'BTsubset_meta' A data frame with 12 rows and 25 columns:

STUDY_ID BioTIME study unique identifier

REALM Realm of study location, i.e. Marine

CLIMATE Climate of study location, i.e. Temperate

HABITAT Habitat of study location, i.e. Rivers

PROTECTED_AREA Binary variable indicating if the study is within a protected area

BIOME_MAP Biome of study location (taken from the WWF biomes, i.e. Temperate broadleaf and mixed forests

TAXA High level taxonomic identity of study species, i.e. Fish

ORGANISMS More detailed information on taxonomy, i.e. woody plants

TITLE Title of study as identified in original source

AB_BIO A, B or AB to designate abundance only, biomass only or both

DATA_POINTS Number of unique data points in study, e.g. 10 data points spanning 15 years = 10

START_YEAR First year of study

END_YEAR Last year of study

CENT_LAT Central latitude taken from the convex hull around all study coordinates

CENT_LONG Central longitude taken from the convex hull around all study coordinates

NUMBER_OF_SPECIES Number of distinct species in study

NUMBER_OF_SAMPLES Number of distinct samples in study

NUMBER_LAT_LONG Number of distinct geographic coordinates in study

TOTAL Total number of records in study

GRAIN_SIZE_TEXT Grain size described in text, i.e. size of forest plots

AREA_SQ_KM Total area of study in km2

DATE_STUDY_ADDED Date that the study was added to the database

ABUNDANCE_TYPE Type of abundance, i.e. count

BIOMASS_TYPE Type of biomass, i.e. weight

SAMPLE_DESC Concatenation of descriptors comprising the unique sampling event

Source

https://biotime.st-andrews.ac.uk/download.php

getAlphaMetrics 5

getAlphaMetrics

Alpha diversity metrics

Description

Calculates a set of standard alpha diversity metrics

Usage

```
getAlphaMetrics(x, measure)
```

Arguments

Χ

(data.frame) BioTIME data table in the format of the output of the gridding

function and/or resampling function.

measure

(character) chosen currency defined by a single column name.

Details

The function getAlphaMetrics computes nine alpha diversity metrics for a given community data frame, where measure is a character input specifying the abundance or biomass field used for the calculations. For each row of the data frame with data, getAlphaMetrics calculates the following metrics:

- Species richness (S) as the total number of species in each year with currency > 0.
- Numerical abundance (N) as the total currency (sum) in each year (either total abundance or total biomass).
- Maximum Numerical abundance (maxN) as the highest currency value reported in each year.
- Shannon or Shannon-Weaver index is calculated as $\sum_i p_i log_b p_i$, where p_i is the proportional abundance of species i and b is the base of the logarithm (natural logarithms), while exponential Shannon is given by exp(Shannon).
- Simpson's index is calculated as $1 sum(p_i^2)$, while Inverse Simpson as $1/sum(p_i^2)$.
- McNaughton's Dominance is calculated as the sum of the pi of the two most abundant species.
- Probability of intraspecific encounter or PIE is calculated as $\left(\frac{N}{N-1}\right)\left(1-\sum_{i=1}^{S}\pi_i^2\right)$.

Note that the input data frame needs to be in the format of the output of the gridding function and/or resampling functions, which includes keeping the default BioTIME data column names. If such columns are not found an error is issued and the computations are halted.

Value

Returns a data frame with results for species richness (S), numerical abundance (N), maximum numerical abundance (maxN), Shannon Index (Shannon), Exponential Shannon (expShannon), Simpson's Index (Simpson), Inverse Simpson (InvSimpson), Probability of intraspecific encounter (PIE) and McNaughton's Dominance (DomMc) for each year and assemblageID.

6 getBetaMetrics

Examples

```
x <- data.frame(
  resamp = 1L,
  YEAR = rep(rep(2010:2015, each = 4), times = 4),
  Species = c(replicate(n = 8L, sample(letters, 24L, replace = FALSE))),
  ABUNDANCE = rpois(24 * 8, 10),
  assemblageID = rep(LETTERS[1L:8L], each = 24)
)
res <- getAlphaMetrics(x, measure = "ABUNDANCE")</pre>
```

getBetaMetrics

Beta diversity metrics

Description

Calculates a set of standard beta diversity metrics

Usage

```
getBetaMetrics(x, measure)
```

Arguments

x (data.frame) BioTIME data table in the format of the output of the gridding function and/or resampling functions.

measure (character) chosen currency defined by a single column name.

Details

The function getBetaMetrics computes three beta diversity metrics for a given community data frame, where measure is a character input specifying the abundance or biomass field used for the calculations. getBetaMetrics calls the vegdist function which calculates for each row the following metrics: Jaccard dissimilarity (method = "jaccard"), Morisita-Horn dissimilarity (method = "horn") and Bray-Curtis dissimilarity (method = "bray"). Here, the dissimilarity metrics are calculated against the baseline year of each assemblage time series i.e. the first year of each time series. Note that the input data frame needs to be in the format of the output of the gridding and/or resampling functions, which includes keeping the default BioTIME data column names. If such columns are not found an error is issued and the computations are halted.

Value

Returns a data.frame with results for Jaccard dissimilarity (JaccardDiss), Morisita-Horn dissimilarity (MorisitaHornDiss), and Bray-Curtis dissimilarity (BrayCurtsDiss) for each year and assemblageID.

getLinearRegressions 7

Examples

```
x <- data.frame(
  resamp = 1L,
  YEAR = rep(rep(2010:2015, each = 4), times = 4),
  Species = c(replicate(
    n = 8L,
    sample(letters, 24L, replace = FALSE))),
  ABUNDANCE = rpois(24 * 8, 10),
  assemblageID = rep(LETTERS[1L:8L], each = 24)
  )

res <- getBetaMetrics(x, measure = "ABUNDANCE")</pre>
```

getLinearRegressions Get Linear Regressions BioTIME

Description

Fits linear regression models to getAlphaMetrics or getBetaMetrics outputs

Usage

```
getLinearRegressions(x, divType, pThreshold = 0.05)
```

Arguments

X	('data.frame') BioTIME data table in the format of the output of getAlphaMetrics or getBetaMetrics functions
divType	('character') string specifying the nature of the metrics in the data; either 'div- Type = "alpha"' or 'divType = "beta"' are supported
pThreshold	('numeric') P-value threshold for statistical significance

Details

The function 'getLinearRegressions' fits simple linear regression models (see lm for details) for a given output ('data') of either getAlphaMetrics or getBetaMetrics function. 'divType' needs to be specified in agreement with x. The typical model has the form 'metric \sim year'. Note that assemblages with less than 3 time points and/or single species time series are removed.

Value

Returns a single long 'data.frame' with results of linear regressions (slope, p-value, significance, intercept) for each 'assemblageID'.

8 gridding

Examples

```
library(BioTIMEr)
x <- data.frame(
  resamp = 1L,
  YEAR = rep(rep(2010:2015, each = 4), times = 4),
  Species = c(replicate(n = 8L * 6L, sample(letters[1L:10L], 4L, replace = FALSE))),
  ABUNDANCE = rpois(24 * 8, 10),
  assemblageID = rep(LETTERS[1L:8L], each = 24)
)
alpham <- getAlphaMetrics(x, "ABUNDANCE")
getLinearRegressions(x = alpham, divType = "alpha", pThreshold = 0.01)
betam <- getBetaMetrics(x = x, "ABUNDANCE")
getLinearRegressions(x = betam, divType = "beta")</pre>
```

gridding

gridding BioTIME data

Description

grids BioTIME data into a discrete global grid based on the location of the samples (latitude/longitude).

Usage

```
gridding(meta, btf, res = 12, resByData = FALSE)
```

Arguments

resByData

meta	(data.frame) BioTIME metadata.
btf	(data.frame) BioTIME data.
res	(integer) cell resolution. Must be in the range [0,30]. Larger values represent finer resolutions. Default: 12 (~96 sq km). Passed to dgconstruct.

(logical) FALSE by default. If TRUE, the function dg_closest_res_to_area

is called to adapt 'res' to the data extent.

Details

Each BioTIME study contains distinct samples which were collected with a consistent methodology over time, and each with unique coordinates and date. These samples can be fixed plots (i.e. SL or 'single-location' studies where measures are taken from a set of specific georeferenced sites at any given time) or wide-ranging surveys, transects, tows, and so on (i.e. ML or 'multi-location' studies where measures are taken from multiple sampling locations over large extents that may or may not align from year to year, see runResampling. gridding is a function designed to deal with the issue of varying spatial extent between studies by using a global grid of hexagonal cells derived from dgconstruct and assigning the individual samples to the cells across the grid based on its latitude and longitude. Specifically, each sample is assigned a different combination of study ID and grid cell resulting in a unique identifier for each assemblage time series within each cell (assemblageID).

9 resampling

This allows for the integrity of each study and each sample to be maintained, while large extent studies are split into local time series at the grid cell level. By default meta represents a long form data frame containing the data information for BioTIME studies and btf is a data frame containing long form data from a main BioTIME query (see Example). res defines the global grid cell resolution, thus determining the size of the cells (see vignette("dggridR")). res = 12 was found to be the most appropriate value when working on the whole BioTIME database(corresponding to ~96 km2 cell area), but the user can define their own grid resolution (e.g. res = 14, or when resbyData = TRUE allow the function to find the best res based on the average study extent.

Value

Returns a 'data.frame', with selected columns from the btf and meta data frames, an extra integer column called 'cell' and two character columns called 'StudyMethod' and 'assemblageID' (concatenation of study_ID and cell).

Examples

```
library(BioTIMEr)
gridded_data <- gridding(BTsubset_meta, BTsubset_data)</pre>
```

resampling

Rarefy BioTIME data to an equal number of samples per year

Description

Takes the output of gridding and applies sample-based rarefaction to standardise the number of samples per year within each cell-level time series (i.e. assemblageID).

Usage

```
resampling(x, measure, resamps = 1L, conservative = FALSE)
```

Arguments

X	put of the gridding function).
measure	(character) currency to be retained during the sample-based rarefaction. Can

be either defined by a single column name or a vector of two or more column

names.

resamps (integer) number of repetitions. Default is 1.

(logical). FALSE by default. If TRUE, whenever a NA is found in the measure conservative

field(s), the whole sample is removed instead of the missing observations only.

10 scale_color_biotime

Details

Sample-based rarefaction prevents temporal variation in sampling effort from affecting diversity estimates (see Gotelli N.J., Colwell R.K. 2001 Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4(4), 379-391) by selecting an equal number of samples across all years in a time series. resampling counts the number of unique samples taken in each year (sampling effort), identifies the minimum number of samples across all years, and then uses this minimum to randomly resample each year down to that number. Thus, standardising the sampling effort between years, standard biodiversity metrics can be calculated based on an equal number of samples (e.g. using getAlphaMetrics, getAlphaMetrics). measure is a character input specifying the chosen currency to be used during the sample-based rarefaction. It can be a single column name or a vector of two or more column names - e.g. for BioTIME, measure="ABUNDANCE", measure="BIOMASS" or measure = c("ABUNDANCE", "BIOMASS").

By default, any observations with NA within the currency field(s) are removed. You can choose to remove the full sample where such observations are present by setting conservative to TRUE. resamps can be used to define multiple iterations, effectively creating multiple alternative datasets as in each iteration different samples will be randomly selected for the years where number of samples > minimum. Note that the function always returns a single data frame, i.e. if resamps > 1, the returned data frame is the result of individual data frames concatenated together, one from each iteration identified by a numerical unique identifier 1:resamps.

Value

Returns a single long form data. frame containing the total currency or currencies of interest (sum) for each species in each year within each rarefied time series (i.e. assemblageID). An extra integer column called resamp indicates the specific iteration.

Examples

```
library(BioTIMEr)
set.seed(42)
x <- gridding(BTsubset_meta, BTsubset_data)
resampling(x, measure = "BIOMASS")
resampling(x, measure = "ABUNDANCE")
resampling(x, measure = c("ABUNDANCE", "BIOMASS"))</pre>
```

scale_color_biotime

Scale construction for ggplot use

Description

Scale construction for ggplot use Scale construction for filling in ggplot scale_color_biotime 11

Usage

```
scale_color_biotime(palette = "realms", discrete = TRUE, reverse = FALSE, ...)
scale_colour_biotime(palette = "realms", discrete = TRUE, reverse = FALSE, ...)
scale_fill_biotime(palette = "realms", discrete = TRUE, reverse = FALSE, ...)
```

Arguments

palette One of: 'realms', 'gradient', 'cool', 'warm', default to 'realms'.

discrete See Details. default to 'FALSE'

reverse Default to 'FALSE'

... Passed to discrete_scale or scale_color_gradient

Details

USAGE NOTE: Remember to change these arguments when plotting colours continuously.

Value

If discrete is TRUE, the function returns a colour palette produced by discrete_scale and if discrete is FALSE, the function returns a colour palette produced by scale_color_gradient.

If discrete is TRUE, the function returns a colour palette produced by discrete_scale and if discrete is FALSE, the function returns a colour palette produced by scale_color_gradient.

Author(s)

Cher F. Y. Chow

Index

```
* datasets
    BTsubset_data, 2
    BTsubset\_meta, 3
BTsubset_data, 2
BTsubset_meta, 3
dg_closest_res_to_area, 8
dgconstruct, 8
discrete_scale, 11
getAlphaMetrics, 5, 7, 10
getBetaMetrics, 6, 7
getLinearRegressions, 7
gridding, 5, 6, 8, 9
1m, 7
resampling, 5, 6, 9
scale_color_biotime, 10
scale_color_gradient, 11
scale_colour_biotime
        (scale_color_biotime), 10
scale_fill_biotime
        (scale_color_biotime), 10
vegdist, 6
```