
Package ‘BioCro’
July 21, 2025

Version 3.2.0

Date 2025-02-25

Title Modular Crop Growth Simulations

Description A cross-platform representation of models as sets of equations
that facilitates modularity in model building and allows users to harness
modern techniques for numerical integration and data visualization.
Documentation is provided by several vignettes included in this package;
also see Lochocki et al. (2022) <doi:10.1093/insilicoplants/diac003>.

Depends R (>= 3.6.0)

Imports stats

Suggests testthat (>= 3.2.0), knitr, rmarkdown, bookdown, lattice,
deSolve

VignetteBuilder knitr

SystemRequirements C++11, GNU make

License MIT + file LICENSE

LazyData true

ByteCompile TRUE

URL https://github.com/biocro/biocro, https://biocro.github.io

Config/testthat/edition 3

NeedsCompilation yes

Author Justin M. McGrath [cre, aut] (ORCID:
<https://orcid.org/0000-0002-7025-3906>),

Edward B. Lochocki [aut] (ORCID:
<https://orcid.org/0000-0002-4912-9783>),

Yufeng He [aut] (ORCID: <https://orcid.org/0000-0001-9895-1880>),
Scott W. Oswald [aut] (ORCID: <https://orcid.org/0000-0002-1906-0340>),
Scott Rohde [aut] (ORCID: <https://orcid.org/0000-0001-9030-0936>),
Deepak Jaiswal [aut] (ORCID: <https://orcid.org/0000-0002-4077-3919>),
Megan L. Matthews [aut] (ORCID:

<https://orcid.org/0000-0002-5513-9320>),
Fernando E. Miguez [aut] (ORCID:

1

https://doi.org/10.1093/insilicoplants/diac003
https://github.com/biocro/biocro
https://biocro.github.io
https://orcid.org/0000-0002-7025-3906
https://orcid.org/0000-0002-4912-9783
https://orcid.org/0000-0001-9895-1880
https://orcid.org/0000-0002-1906-0340
https://orcid.org/0000-0001-9030-0936
https://orcid.org/0000-0002-4077-3919
https://orcid.org/0000-0002-5513-9320

2 Contents

<https://orcid.org/0000-0002-4627-8329>),
Stephen P. Long [aut] (ORCID: <https://orcid.org/0000-0002-8501-7164>),
Dan Wang [ctb],
David LeBauer [ctb] (ORCID: <https://orcid.org/0000-0001-7228-053X>),
BioCro authors [cph],
Boost Organization [cph] (Copyright holder of included Boost library)

Maintainer Justin M. McGrath <jmcgrath@illinois.edu>

Repository CRAN

Date/Publication 2025-03-07 11:20:17 UTC

Contents
add_time_to_weather_data . 3
annualDB . 4
catm_data . 4
cmi_soybean_weather_data . 5
cmi_weather_data . 7
compare_model_output . 9
crop_model_definitions . 10
default_ode_solvers . 12
dynamical_system . 12
get_all . 14
get_growing_season_climate . 16
miscanthus_x_giganteus . 17
model_testing . 18
model_test_case . 19
modules . 21
module_case_files . 24
module_creators . 26
module_paste . 27
module_testing . 28
module_write . 30
obsBea . 32
obsBeaC . 32
obsNaid . 33
partial_application . 33
run_biocro . 36
run_model_test_cases . 38
soil_parameters . 40
soybean . 41
soybean_clock . 44
system_derivatives . 45
test_module . 47
test_module_library . 49
Time Variable . 51
update_stored_model_results . 51
willow . 53

https://orcid.org/0000-0002-4627-8329
https://orcid.org/0000-0002-8501-7164
https://orcid.org/0000-0001-7228-053X

add_time_to_weather_data 3

Index 54

add_time_to_weather_data

Add a time component to input

Description

Ensure, if possible, that input data that varies over time has a "time" component. See the documen-
tation for time for more information about this quantity.

It is rare for users to call this function directly because it is called internally by run_biocro.

Usage

add_time_to_weather_data(drivers)

Arguments

drivers A list or dataframe representing known system parameters that vary over time,
such as weather data.

Value

If drivers has doy and hour columns, then it is assumed to represent weather data, and will be
modified as follows:

• A new time column will be computed from doy and hour.

• The original doy and hour columns will be removed.

In this case, it is expected that the BioCro:format_time direct module will be used to re-compute
doy and hour from time.

If drivers does not have doy and hour columns, then drivers will be returned as-is.

Note

Preconditions:

• If drivers is a list, the values should be vectors of equal length.

• If drivers already contains a time component, then it shouldn’t contain either a doy or an
hour component unless it contains both of them and the values are mutually consistent.

Why is the ’BioCro:format_time’ module necessary?
If values of doy and hour are supplied to run_biocro in the drivers, undesired results may happen
during interpolation. For example, if two sequential rows have (time = 3599, doy = 150, hour
= 23) and (time = 3600, doy = 151, hour = 0), and the results are to be returned at half-hour
time intervals, then linear interpolation between these rows would produce (time = 3599.5, doy =
150.5, hour = 11.5). Typically it is expected that doy takes only integer values, so this may cause
issues. Using the BioCro:format_time module to calculate doy and hour from time will ensure
that the result includes (time = 3599.5, doy = 150, hour = 23.5) instead.

4 catm_data

Examples

Add a time column to the buit-in 2002 weather data
new_weather <- add_time_to_weather_data(weather[['2002']])

Compare column names
colnames(weather[['2002']])
colnames(new_weather)

annualDB Miscanthus dry biomass data.

Description

The first column is the thermal time. The second, third, fourth, and fifth columns are miscanthus
stem, leaf, root, and rhizome dry biomass in Mg ha−1 (root is missing). The sixth column is the
leaf area index. The annualDB.c version is altered so that root biomass is not missing and LAI is
smaller. The purpose of this last modification is for testing some functions.

Format

Data frame of dimensions 5 by 6.

Source

Clive Beale and Stephen Long. 1997. Seasonal dynamics of nutrient accumulation and partition-
ing in the perennial C4 grasses Miscanthus x giganteus and Spartina cynosuroides. Biomass and
Bioenergy 12 (6): 419–428.

catm_data Global annual mean atmopspheric CO2 levels

Description

Multiple years of globally averaged annual mean atmospheric CO2 levels and their uncertainties.

This data is included in the BioCro package so users can reproduce calculations in Lochocki et
al. (2022) [doi:10.1093/insilicoplants/diac003] and for exploratory purposes; it is likely that most
BioCro studies will require different data sets, and no attempt is made here to be exhaustive.

Usage

catm_data

https://doi.org/10.1093/insilicoplants/diac003

cmi_soybean_weather_data 5

Format

Data frame with 3 columns and 44 rows:

• year: the year

• Catm: CO2 concentration (micromol / mol)

• unc: the uncertainty associated with the CO2 concentration (micromol / mol)

Source

Data were obtained from the National Oceanic and Atmospheric Administration’s Global Monitor-
ing Laboratory (https://gml.noaa.gov/ccgg/trends/data.html) on 2024-02-07.

The exact link used was https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt.

Alternatively, the data can be accessed from https://gml.noaa.gov/ccgg/trends/gl_data.html by click-
ing the link to Globally averaged marine surface annual mean data (CSV).

Note: the globally averaged value for 2023 was not yet available, so the 2023 Mauna Loa value was
used instead as a temporary fix. This value is likely to be slightly higher than the global value (by
around 1 ppm).

These data are provided here as a convenience to BioCro users; please visit the NOAA GML web-
page for guidelines regarding the use of this data if you are intending to include it in a publication.

cmi_soybean_weather_data

Champaign, IL weather data for Soybean-BioCro

Description

Champaign, IL weather data specified at hourly intervals in the CST time zone for the years 2002,
2004, 2005, and 2006. The data includes typical inputs required for BioCro simulations, with the
addition of day_length, which is specifically required for soybean simulations. Although this
quantity can be calculated by modules during the course of a simulation, it is included in this
weather data to speed up the simulations. The time range is restricted to the SoyFACE growing
season that was used for each year.

This weather data is included in the BioCro package so users can reproduce the calculations of
Matthews et al. (2022) [doi:10.1093/insilicoplants/diab032] and for exploratory purposes; it is
likely that most BioCro studies will require different data sets, and no attempt is made here to be
exhaustive.

Usage

soybean_weather

https://doi.org/10.1093/insilicoplants/diab032

6 cmi_soybean_weather_data

Format

A list of 4 named elements, where each element is a data frame corresponding to one year of weather
data and the name of each element is a year, for example '2004'. Each data frame has 2952 - 3384
observations (representing hourly time points) of 14 variables:

• year: the year

• doy: the day of year

• hour: the hour

• time_zone_offset: the time zone offset relative to UTC (hr)

• precip: preciptation rate (mm / hr)

• rh: the ambient relative humidity (dimensionless)

• dw_solar: downwelling global solar radiation (J / m^2 / s)

• up_solar: upwelling global solar radiation (J / m^2 / s)

• netsolar: net global solar radiation (downwelling - upwelling) (J / m^2 /s)

• solar: the incoming photosynthetically active photon flux density (PPFD) measured on a
ground area basis including direct and diffuse sunlight light just outside the crop canopy (mi-
cromol / m^2 / s)

• temp: the ambient air temperature (degrees Celsius)

• windspeed: the wind speed in the ambient air just outside the canopy (m / s)

• zen: the solar zenith angle (degrees)

• day_length: the length of the daily photoperiod (hours)

Source

Weather data were obtained from the public SURFRAD and WARM databases and processed ac-
cording to the method described in Matthews et al. (2022) [doi:10.1093/insilicoplants/diab032].
See that paper for a full description of the data processing.

In brief, the columns in the data frames were determined from SURFRAD and WARM variables as
follows:

• precip: from the precip variable in the WARM data set

• rh: from the rh variable in the SURFRAD data set

• dw_solar: from the dw_solar variable in the SURFRAD data set

• up_solar: from the uw_solar variable in the SURFRAD data set

• netsolar: from the netsolar variable in the SURFRAD data set

• solar: from the par variable in the SURFRAD data set; when these values are not available,
the netsolar and up_solar variables are used to make an estimate; when these values are
also not available, the dw_solar variable is used to make an estimate

• temp: from the temp variable in the SURFRAD data set

• windspeed: from the windspd variable in the SURFRAD data set

• zen: from the zen variable in the SURFRAD data set

• day_length: calculated from solar using an oscillator-based circadian clock

https://doi.org/10.1093/insilicoplants/diab032

cmi_weather_data 7

The WARM data set includes daily values. Hourly values for precipitation are derived from daily
totals by assuming a constant rate of precipitation throughout the day.

The SURFRAD data set includes values at 1 or 3 minute intervals. Hourly values are determined
by averaging over hourly intervals, where the value at hour h is the average over that hour. Some
values are missing; any missing entries are filled by interpolating between neighboring hours.

To create this data frame, hourly values for all columns except day_length are extracted from
the WARM and SURFRAD data. Then, BioCro is used to run the circadian clock model that
determines photoperiod length. (See this page for additional information about the clock model:
soybean_clock.) The result from this calculation is then appended to the weather data frame as a
new column.

The time_zone_offset is set to a constant value of -6 since this data is specified in the CST
time zone (i.e., UTC-6). Since the value of this quantity does not change, it could in principle
be considered a parameter rather than a driver; however, it is included with the weather data for
convenience.

To reduce size the in the BioCro repository, the raw data values are rounded. This was done using
the commands in a script that is included with the BioCro package. This script can be located by
typing system.file('BioCro', 'extdata', 'get_soybean_weather_data.R').

cmi_weather_data Champaign, IL weather data

Description

Champaign, IL weather data specified at hourly intervals in the CST time zone for the years 1995–
2023. The data includes typical inputs required for BioCro imulations. Note: some values are
missing near the start of 1995 since those time points are not available from SURFRAD.

This weather data is included in the BioCro package so users can reproduce the calculations of Lo-
chocki et al. (2022) [doi:10.1093/insilicoplants/diac003] and for exploratory purposes; it is likely
that most BioCro studies will require different data sets, and no attempt is made here to be exhaus-
tive.

Usage

weather

Format

A list of 29 named elements, where each element is a data frame corresponding to one year of
weather data and the name of each element is a year, for example '2004'. Each data frame has
8760 or 8784 observations (representing hourly time points) of 9 variables:

• year: the year

• doy: the day of year

• hour: the hour

• time_zone_offset: the time zone offset relative to UTC (hr)

https://doi.org/10.1093/insilicoplants/diac003

8 cmi_weather_data

• precip: preciptation rate (mm / hr)

• rh: the ambient relative humidity (dimensionless)

• solar: the incoming photosynthetically active photon flux density (PPFD) measured on a
ground area basis including direct and diffuse sunlight light just outside the crop canopy (mi-
cromol / m^2 / s)

• temp: the ambient air temperature (degrees Celsius)

• windspeed: the wind speed in the ambient air just outside the canopy (m / s)

Source

Weather data were obtained from the public SURFRAD and WARM databases and processed ac-
cording to the method described in Lochocki et al. (2022) [doi:10.1093/insilicoplants/diac003]. See
version 1.2.0 of the eloch216/oscillator-based-circadian-clock-analysis GitHub reposi-
tory for a full description of the data processing.

In brief, the columns in the data frames were determined from SURFRAD and WARM variables as
follows:

• precip: from the precip variable in the WARM data set

• rh: from the rh variable in the SURFRAD data set

• solar: from the par variable in the SURFRAD data set; when these values are not available,
the direct_n, diffuse, and zen variables are used to make an estimate

• temp: from the temp variable in the SURFRAD data set

• windspeed: from the windspd variable in the SURFRAD data set

The WARM data set includes daily values. Hourly values for precipitation are derived from daily
totals by assuming a constant rate of precipitation throughout the day.

The SURFRAD data set includes values at 1 or 3 minute intervals. Hourly values are determined by
averaging over hourly intervals, where the value at hour h is the average over the hour-long interval
centered at h. Some values are missing; any missing entries are filled via an interpolation procedure
based on the assumption that values at the same hour of sequential days should be similar.

The time_zone_offset is set to a constant value of -6 since this data is specified in the CST
time zone (i.e., UTC-6). Since the value of this quantity does not change, it could in principle
be considered a parameter rather than a driver; however, it is included with the weather data for
convenience.

To reduce size the in the BioCro repository, the raw data values are rounded. This was done using
the commands in a script that is included with the BioCro package. This script can be located by
typing system.file('BioCro', 'extdata', 'rounding_weather_values.R').

https://doi.org/10.1093/insilicoplants/diac003
https://github.com/eloch216/oscillator-based-circadian-clock-analysis
https://github.com/eloch216/oscillator-based-circadian-clock-analysis

compare_model_output 9

compare_model_output Compare new and stored results for a BioCro model test case

Description

BioCro models can be tested using test cases, which are sets of known outputs that correspond to
particular inputs. The compare_model_output function facilitates manual comparisons between
new and stored results.

Note that model tests are distinct from the module tests described in module_testing.

Usage

compare_model_output(mtc, columns_to_keep = NULL)

Arguments

mtc A single module test case, which should be created using model_test_case.

columns_to_keep

A vector of column names that should be included in the return value. If columns_to_keep
is NULL, all columns that are in both the new and stored result will be included.

Details

The compare_model_output function is a key part of the BioCro model testing system. See
model_testing for more information.

This function will run the model to get a new result, and load the stored result associated with the
test case. The two data frames will be combined using rbind, where a new column named version
indicates whether each row is from the new or stored result.

It is intended that quantities from the resulting data frame will be plotted to visually look for changes
in the model output.

Value

A data frame as described above.

See Also

• model_testing

• model_test_case

• run_model_test_cases

• compare_model_output

10 crop_model_definitions

Examples

Define a test case for the miscanthus model and save the model output to a
temporary directory
miscanthus_test_case <- model_test_case(

'miscanthus_x_giganteus',
miscanthus_x_giganteus,
get_growing_season_climate(weather$'2005'),
TRUE,
tempdir()

)

update_stored_model_results(miscanthus_test_case)

Now we can use `compare_model_output` to compare the saved result to a new one
comparison_df <- compare_model_output(miscanthus_test_case)

This will be a boring example because the new and stored results will be
exactly the same
lattice::xyplot(

Leaf + Stem + Root ~ time,
group = version,
data = comparison_df,
type = 'l',
auto = TRUE,
grid = TRUE

)

crop_model_definitions

Crop model definitions

Description

In BioCro, a crop model is defined by sets of direct modules, differential modules, initial values,
and parameters, along with an ordinary differential equation (ODE) solver. To run a model, these
values, along with a set of weather data, are passed to the run_biocro function. For convenience,
several crop model definitions are included in the BioCro R package. A full list can be obtained by
typing ??crop_models into the R terminal.

Details

Each crop model definition is stored as a list with the following named elements:

• direct_modules: A list of direct module names; can be passed to run_biocro as its direct_module_names
argument.

• differential_modules: A list of differential module names; can be passed to run_biocro
as its differential_module_names argument.

• ode_solver: A list specifying details of a numerical ODE solver; can be passed to run_biocro
as its ode_solver argument.

crop_model_definitions 11

• initial_values: A list of named quantity values; can be passed to run_biocro as its
initial_values argument.

• parameters: A list of named quantity values; can be passed to run_biocro as its parameters
argument, and also can be passed to evaluate_module and module_response_curve when
investigating the behavior of one of the crop’s modules.

These model definitions are not sufficient for running a simulation because run_biocro also re-
quires drivers; for these crop growth models, the drivers should be sets of weather data. The
soybean model is intended to be used along with the specialized soybean weather data (see cmi_soybean_weather_data).
The other crops should be used with the other weather data (see cmi_weather_data).

Some quantities in the crop model definitions, such as the values of photosynthetic parameters,
would remain the same in any location; others, such as the latitude or longitude, would need to
change when simulating crop growth in different locations. Care must be taken to understand each
input quantity before attempting to run simulations in other places or for other cultivars.

Typically, the modules in a crop model definition are defined as lists with some named elements; the
names facilitate on-the-fly module swapping via the within function. For example, to change the
soybean canopy photosynthesis module to the BioCro:ten_layer_rue_canopy module, one could
pass within(soybean$direct_modules, {canopy_photosynthesis = "BioCro:ten_layer_rue_canopy"})
as the direct_module_names argument when calling run_biocro instead of soybean$direct_modules.

Because each crop model definition is stored as a list with named elements, it is possible to use
the with function to save some typing when calling run_biocro or related functions such as
partial_run_biocro or validate_dynamical_system_inputs. For an example, compare Example 1
and Example 2 below. Besides shortening the code, using with also makes it easy to modify a com-
mand to simulate the growth of a different crop; if the two models can use the same drivers, this
switch can be accomplished with one small change (Example 3).

See Also

• run_biocro

• modules

Examples

Example 1: Simulating Miscanthus growth using its model definition list
result1 <- run_biocro(

miscanthus_x_giganteus$initial_values,
miscanthus_x_giganteus$parameters,
get_growing_season_climate(weather$'2002'),
miscanthus_x_giganteus$direct_modules,
miscanthus_x_giganteus$differential_modules,
miscanthus_x_giganteus$ode_solver

)

Example 2: Performing the same simulation as in Example 1, but making use of
the `with` command to reduce repeated references to the model definition list
result2 <- with(miscanthus_x_giganteus, {run_biocro(

initial_values,
parameters,
get_growing_season_climate(weather$'2002'),

12 dynamical_system

direct_modules,
differential_modules,
ode_solver

)})

Example 3: Simulating willow growth using the same weather data as Examples 1
and 2, which just requires one change relative to Example 2
result3 <- with(willow, {run_biocro(

initial_values,
parameters,
get_growing_season_climate(weather$'2002'),
direct_modules,
differential_modules,
ode_solver

)})

default_ode_solvers Default ODE solver settings

Description

A collection of reasonable settings to use with each ODE solver type. Users may need or wish to
modify them for particular applications.

Usage

default_ode_solvers

Format

A list of 6 named elements, where each name is one of the possible ODE solver types. Each
element is itself a list of 5 named elements that can be passed to run_biocro as its ode_solver
input argument.

Details

A full list of solver types can be obtained with the get_all_ode_solvers function.

dynamical_system Validating dynamical system inputs

Description

Utility function for checking inputs to run_biocro without running it

dynamical_system 13

Usage

validate_dynamical_system_inputs(
initial_values = list(),
parameters = list(),
drivers,
direct_module_names = list(),
differential_module_names = list(),
verbose = TRUE

)

Arguments

initial_values Identical to the corresponding argument from run_biocro.

parameters Identical to the corresponding argument from run_biocro.

drivers Identical to the corresponding argument from run_biocro.

direct_module_names

Identical to the corresponding argument from run_biocro.

differential_module_names

Identical to the corresponding argument from run_biocro.

verbose Identical to the corresponding argument from run_biocro.

Details

validate_dynamical_system_inputs accepts the same input arguments as run_biocro with the
exception of ode_solver (which is not required to check the validity of a dynamical system).

validate_dynamical_system_inputs checks a set of parameters, drivers, modules, and initial
values to see if they can properly define a dynamical system and can therefore be used as in-
puts to run_biocro. Although the run_biocro function performs the same validity checks, the
validate_dynamical_system_inputs includes additional information, such as a list of parame-
ters whose values are not used as inputs by any modules, since in principle these parameters could
be removed for clarity.

When using one of the pre-defined crop growth models, it may be helpful to use the with com-
mand to pass arguments to validate_dynamical_system_inputs; see the documentation for
crop_model_definitions for more information.

Value

A boolean indicating whether or not the inputs are valid.

See Also

run_biocro

14 get_all

Examples

Example 1: missing a parameter and an initial value
validate_dynamical_system_inputs(

within(soybean$initial_values, rm(Leaf)), # remove the initial `Leaf` value
within(soybean$parameters, rm(leaf_reflectance)), # remove `leaf_reflectance`
soybean_weather$'2002',
soybean$direct_modules,
soybean$differential_modules

)

Example 2: a valid set of input arguments
validate_dynamical_system_inputs(

soybean$initial_values,
soybean$parameters,
soybean_weather$'2002',
soybean$direct_modules,
soybean$differential_modules

)

get_all Get lists of modules, quantities, and solvers

Description

get_all_modules returns the fully-qualified names (of the form library_name:local_module_name)
for all modules available in a BioCro module library package.

get_all_quantities returns information about all quantities used as inputs or outputs by modules
available in a BioCro module library package.

get_all_ode_solvers returns the names of all ordinary differential equation (ODE) solvers avail-
able in the BioCro framework.

Usage

get_all_modules(library_name)

get_all_quantities(library_name)

get_all_ode_solvers()

Arguments

library_name The name of a BioCro module library

get_all 15

Details

These "get_all" functions return the modules, quantities, and ODE solvers available within the
BioCro framework or a BioCro module library package.

Developer details: The get_all_modules and get_all_quantities expect a module library pack-
age to include unexported functions called get_all_modules_internal and get_all_quantities_internal,
respectively. These functions should not have any input arguments, and their return values should
follow the requirements described below for get_all_modules and get_all_quantities. Any
module library package created by forking from the skeleton library will automatically include
these functions without any modifications to the package’s R code.

Value

get_all_modules

A character vector of fully-qualified module names

get_all_quantities

A data frame with three columns: quantity_type (input or output), quantity_name,
and module_name. A quantity will appear multiple times if it is use as both an
input and an output, or if it is used by multiple modules.

get_all_ode_solvers

A character vector of ODE solver names

See Also

• modules

• module_paste

• run_biocro

Examples

Example 1: Getting a sorted list of distinct quantities defined by modules in
the `BioCro` module library. Doing this can be useful when writing a new
module that is intended to work along with pre-existing modules.
all_quantities <- get_all_quantities('BioCro')
all_quantity_names <- all_quantities$quantity_name
distinct_quantities <- sort(unique(all_quantity_names))

Example 2: Getting a list of all modules in the `BioCro` module library that
have "ci" as an input or output, using `tolower()` to account for any possible
variations in capitalization.
all_quantities <- get_all_quantities('BioCro')
ci_modules <- subset(all_quantities, tolower(quantity_name) == "ci")

16 get_growing_season_climate

get_growing_season_climate

Truncate weather data to one growing season

Description

Attempt to restrict a year of weather data to a growing season; not intended to be a general-use
function (see below for a detailed discussion of its shortcomings).

Usage

get_growing_season_climate(climate, threshold_temperature = 0)

Arguments

climate A data frame representing one year of weather data, typically intended to be
passed to run_biocro as its drivers argument. This data frame must have
columns for the day of year (doy) and the air temperature in degrees C (temp).

threshold_temperature

The value of air temperature in degrees C to use when locating the beginning
and end of the growing season.

Details

DISCLAIMER: This function is included here primarily to reproduce the output of older BioCro
calculations, where it used to be hard-coded into every simulation. It has several severe limitations
which are discussed below, and is not intended to be a general-use function for subsetting weather
data.

To determine the growing season, this function locates its beginning and end based on the air tem-
perature data. The start of the growing season is set by the last day in the first half of the year where
the air temperature is below (or equal to) the threshold temperature, or day 90, whichever is later.
The end of the growing season is set by the first day of the second half of the year where the air
temperature is below (or equal to) the threshold temperature, or day 330, whichever is earlier.

This is not a sophisticated function and no attempt is made to ensure that the output is reasonable.
For example, if the air temperature never exceeds the threshold value, a growing season beginning
on day 183 (the last day of the first half of the year) and ending on day 184 (the first day of the
second half of the year) will be returned. If the air temperature always exceeds the threshold value,
the growing season will go from day 90 to day 330.

This function also assumes that the air temperature generally increases early in the year and gen-
erally decreases later in the year, and is only applicable for locations where this is the case. It is
therefore unlikely to work properly in the Southern Hemisphere or the tropics.

In general, an appropriate threshold temperature would depend on the species that is being modeled.
For a perennial grass, the growth season might be said to begin after the last freeze, requiring a
threshold temperature of 0 degrees C. Of course, this is an oversimplification of a complicated
biological process, and a plant has no way of knowing when it has experienced the last freezing day
of the year.

miscanthus_x_giganteus 17

On the other hand, annual crops like maize or soybean are not typically sown until conditions are
warmer and might require a higher threshold. Again, this is an oversimplification of a complicated
process. Farmers typically take trends in temperature, historical data, soil conditions, and weather
predictions into account when deciding to sow, and they may also be constrained by external factors
like the availability of machinery, seeds, or labor.

It should also be noted that as the threshold temperature increases, the likelihood of that air tem-
perature occurring at night, even in the middle of summer, also increases. Consequently, if the
threshold is set too high, an unrealistically short growing season may be predicted. For example,
calling get_growing_season_climate(weather$'2005', 15) returns a two-day growing season
(days 183–184) because the temperatures in the late night of day 183 and the early morning of day
184 both dip below 15 degrees C.

Thus, the logic encoded here is an oversimplification in several ways. It is likely not appropriate in
many situations, and more tailored approaches would be required.

Value

A copy of the climate data frame truncated to the growing season.

Examples

Truncate the 2002 Champaign, Illinois weather data to an estimated growing
season
truncated_weather <- get_growing_season_climate(weather[['2002']])

We can see which days were included
list(

doy_start = min(truncated_weather$doy),
doy_end = max(truncated_weather$doy)

)

miscanthus_x_giganteus

Miscanthus model definition

Description

Initial values, parameters, direct modules, differential modules, and a differential equation solver
that can be used to run Miscanthus x giganteus growth simulations in Champaign, Illinois and other
locations.

To represent Miscanthus growth in Champaign, IL, these values must be paired with the Champaign
weather data (cmi_weather_data). The parameters already include the clay_loam values from the
soil_parameters dataset, which is the appropriate soil type for Champaign.

Some specifications, such as the values of photosynthetic parameters, would remain the same in
any location; others, such as the latitude or longitude, would need to change when simulating crop
growth in different locations. Care must be taken to understand each input quantity before attempt-
ing to run simulations in other places or for other cultivars.

18 model_testing

Usage

miscanthus_x_giganteus

Format

A list of 5 named elements that are suitable for passing to run_biocro, as described in the help
page for crop_model_definitions.

Source

This model was originally described in Miguez et al. (2009) [doi:10.1111/j.17571707.2009.01019.x]
and Miguez et al. (2012) [doi:10.1111/j.17571707.2011.01150.x]. Since its original parameteriza-
tion, the behavior of several of its core modules has changed as bugs have been identified and fixed,
so this model likely needs to be reparameterized before it can be used for realistic simulations.

See Also

• run_biocro

• modules

• crop_model_definitions

model_testing The BioCro model testing system

Description

BioCro provides several functions for defining, modifying, and running model test cases. These
functions together allow model developers to easily create regression tests that ensure the models
continue to function correctly.

Note that model tests are distinct from the module tests described in module_testing.

Details

Together, model_test_case, run_model_test_cases, update_stored_model_results, and compare_model_output
form a simple and convenient system for defining and running model test cases. Such tests form a
critical component of BioCro’s regression testing system, and test cases should be defined for all
BioCro models in all BioCro-related repositories. These functions are not required in order to use
the BioCro package, but they are critical to understand when creating or modifying models, or the
modules they use.

A model test case consists of a model definition, a set of drivers, a short name, and a few additional
settings that specify some of the testing behavior. To run a test, the model definition and drivers
are passed to run_biocro to ensure the model is well-defined, and then the results are (optionally)
compared against saved results to ensure the model behavior has not changed. Multiple test cases
can be defined in a single list and passed to run_model_test_cases, which will run all of them.

https://doi.org/10.1111/j.1757-1707.2009.01019.x
https://doi.org/10.1111/j.1757-1707.2011.01150.x

model_test_case 19

In this system, stored data for a test case with name 'test_name' must be stored in a CSV file called
'test_name_simulation.csv'. The update_stored_model_results function can be used to
generate a suitable file.

Typically, a BioCro-related repository will include a model testing file that defines test cases and
runs them to check for issues. An example can be found in the tests/testthat/test.CropModels.R
file. The associated stored test results can be found in the tests/testthat/test_data directory.

If any of the initial values, parameters, modules or weather data change, or if the behavior of any
of these modules changes, the stored data for one or more model test cases will likely need to be
updated. This can be done using the update_stored_model_results function.

Sometimes these changes are not expected to alter key outputs like the biomass values. In this
case, it is helpful to visually compare the new and old biomass values. This can be done using the
compare_model_output function before updating the results.

See Also

• crop_model_definitions

• model_test_case

• update_stored_model_results

• compare_model_output

• run_model_test_cases

model_test_case Define BioCro model test cases

Description

BioCro models can be tested using test cases, which are sets of known outputs that correspond to
particular inputs. The model_test_case function defines such a test case.

Note that model tests are distinct from the module tests described in module_testing.

Usage

model_test_case(
test_case_name,
model_definition,
drivers,
check_outputs,
directory = '.',
quantities_to_ignore = character(),
row_interval = 24,
digits = 5,
relative_tolerance = 1e-3

)

20 model_test_case

Arguments

test_case_name A string describing the test case.

model_definition

A list defining a model, as described in the documentation for crop_model_definitions.

drivers A set of drivers to be passed to run_biocro along with the model_definition.

check_outputs A logical value indicating whether to compare the simulation output against a
stored result.

directory A relative or absolute path to a directory containing a stored simulation result.
Only used when check_outputs is TRUE.

quantities_to_ignore

A character vector of any quantities that should not be compared against the
stored results. Only used when check_outputs is TRUE.

row_interval Determines which rows are saved and compared when using update_stored_model_results,
compare_model_output, or run_model_test_cases. Only used when check_outputs
is TRUE.

digits Passed to signif to round values when storing saved results. Only used when
check_outputs is TRUE.

relative_tolerance

A relative tolerance to be used when comparing new values against stored ones.
This value will be passed to all.equal as its tolerance input argument. Only
used when check_outputs is TRUE.

Details

The model_test_case function forms the basis for the BioCro model testing system. See model_testing
for more information.

With the default settings:

• Every 24 rows of the simulation output will be stored and compared. When using drivers with
an hourly time step, this corresponds to one row for each day.

• Values in the stored simulation results will be rounded to five significant digits. This reduces
the size of the stored result file.

• The value of the relative tolerance was chosen to be the smallest value that enabled the tests
to pass on all operating systems.

These default settings have proven useful for the BioCro miscanthus_x_giganteus, willow, and
soybean models.

Value

A list that defines a model test case, which can be passed to update_stored_model_results,
compare_model_output, or run_model_test_cases.

modules 21

See Also

• model_testing

• crop_model_definitions

• update_stored_model_results

• compare_model_output

• run_model_test_cases

Examples

Define a test case for the miscanthus model
miscanthus_test_case <- model_test_case(

'miscanthus_x_giganteus',
miscanthus_x_giganteus,
get_growing_season_climate(weather$'2005'),
TRUE,
tempdir(),
'soil_evaporation_rate'

)

The result is a specially formatted list
str(miscanthus_test_case)

modules BioCro module functions

Description

BioCro modules are named sets of equations, and each module is available from a BioCro module
library. Each module is identified by a fully-qualified name that includes the name of its library
and its local name within that library. The functions here provide ways to access information about
modules and to calculate their output values from sets of input values.

module_info returns essential information about a BioCro module.

quantity_list_from_names initializes a list of named numeric elements from a set of names.

evaluate_module runs a BioCro module using a list of input quantity values.

module_response_curve runs a BioCro module repeatedly with different input quantity values to
produce a response curve.

Usage

module_info(module_name, verbose = TRUE)

quantity_list_from_names(quantity_names)

evaluate_module(module_name, input_quantities)

module_response_curve(module_name, fixed_quantities, varying_quantities)

https://en.wikipedia.org/wiki/Fully_qualified_name

22 modules

Arguments

module_name A string specifying one BioCro module, formatted like library_name:local_module_name,
where library_name is the name of a library that contains a module with local
name local_module_name; such fully-qualified module names can be formed
manually or with module_paste.

verbose A boolean indicating whether or not to print information to the R console.
input_quantities

A list of named numeric elements representing the input quantities required by
the module; any extraneous quantities will be ignored by the module.

quantity_names A vector of strings.
fixed_quantities

A list of named numeric elements representing input quantities required by the
module whose values should be considered to be constant; any extraneous quan-
tities will be ignored by the module.

varying_quantities

A data frame where each column represents an input quantity required by the
module whose value varies across the response curve.

Details

By providing avenues for retrieving information about a module and evaluating a module’s equa-
tions, the module_info and evaluate_module functions form the main interface to individual
BioCro modules from within R. The quantity_list_from_names function is a convenience func-
tion for preparing suitable quantity lists to pass to evaluate_module.

The module_response_curve function provides a convenient way to calculate a module response
curve. To do this, a user must specify a module to use, the values of any fixed input quantities
(input_quantities), and a sequence of values for other quantities that vary across the response
curve (varying_quantities). The returned data frame includes all the information that would be
required to reproduce the curve: the full-qualified module name, all inputs (including ones with
constant values), and the outputs. Note: if one quantity q is both an input and output of the module,
its input value will be stored in the q column of the returned data frame and its output value will be
stored in the q.1 column; this renaming is performed automatically by the make.unique function.

Value

module_info An invisible list of several named elements containing essential information
about the module:

• module_name: The module’s (not-fully-qualified) name
• inputs: A character vector of the module’s inputs
• outputs: A character vector of the module’s outputs
• type: The module’s type represented as a string (either ’differential’ or

’direct’)
• euler_requirement: Indicates whether the module requires a fixed-step

Euler ODE solver when used in a BioCro simulation
• creation_error_message: Describes any errors that occurred while cre-

ating an instance of the module

modules 23

quantity_list_from_names

A list of named numeric elements, where the names are set by quantity_names
and each value is set to 1.

evaluate_module

A list of named numeric elements representing the values of the module’s out-
puts as calculated from the input_quantities according to the module’s equa-
tions.

module_response_curve

A data frame where the first column is the fully-qualified name of the module
that produced the response curve and the remaining columns are the module’s in-
put and output quantities. Each row corresponds to a row in the varying_quantities.

See Also

• get_all_modules

• module_paste

• module_testing

• partial_evaluate_module

Examples

Example 1: printing information about the 'BioCro' module library's
'c3_assimilation' module to the R console
module_info('BioCro:c3_assimilation')

Example 2: getting the inputs to the 'BioCro' module library's
'thermal_time_linear' module, generating a default input list, and using it to
run the module
info <- module_info('BioCro:thermal_time_linear', verbose = FALSE)
inputs <- quantity_list_from_names(info$inputs) # All inputs will be set to 1
outputs <- evaluate_module('BioCro:thermal_time_linear', inputs)

Example 3: calculating the temperature response of light saturated net
assimilation at several values of relative humidity in the absence of water
stress using the 'BioCro' module library's 'c3_assimilation' module and
the default soybean parameters. Here, the leaf temperature and humidity values
are independent of each other, so we use the `expand.grid` function to form a
data frame of all possible combinations of their values. Then we set the
ambient temperature equal to the leaf temperature.
rc <- module_response_curve(

'BioCro:c3_assimilation',
within(soybean$parameters, {Qabs = 2000; StomataWS = 1; gbw = 1.2}),
within(
expand.grid(

Tleaf = seq(from = 0, to = 40, length.out = 201),
rh = c(0.2, 0.5, 0.8)

),
{temp = Tleaf}

)
)

24 module_case_files

caption <- paste(
"Response curves calculated with several RH\nvalues and Q =",
unique(rc$Qp),
"micromol / m^2 / s\nusing the",
unique(rc$module_name),
"module"

)

lattice::xyplot(
Assim ~ Tleaf,
group = rh,
data = rc,
auto = TRUE,
type = 'l',
main = caption

)

module_case_files Define and modify BioCro module test case files

Description

Test cases for testing modules can be stored in files. The functions here provide ways to create and
update those files.

initialize_csv helps define test cases for module testing by initializing the csv file for one mod-
ule based on either a set of default input values or user-supplied ones.

add_csv_row helps define test cases for module testing by adding one test case to a module’s csv
file based on the user-supplied inputs and description.

update_csv_cases helps define cases for module testing by updating the expected output values
for each case stored in a module’s csv file.

Note that module tests are distinct from the model tests described in model_testing.

Usage

initialize_csv(
module_name,
directory,
nonstandard_inputs = list(),
description = "automatically-generated test case",
overwrite = FALSE

)

add_csv_row(module_name, directory, inputs, description)

update_csv_cases(module_name, directory)

module_case_files 25

Arguments

module_name A string specifying one BioCro module, formatted like library_name:local_module_name,
where library_name is the name of a library that contains a module with local
name local_module_name; such fully-qualified module names can be formed
manually or with module_paste.

directory The directory where module test case files are stored, e.g. file.path('tests',
'module_test_cases').

inputs A list of module inputs, i.e., a list of named numeric elements corresponding to
the module’s input quantities.

description A string describing the test case, e.g. "temp above tbase". The description
should be succinct and not contain any newline characters.

nonstandard_inputs

An optional list of input quantities whose values will override the default value
of 1.0; see the inputs entry above.

overwrite A logical value indicating whether an existing file should be overwritten.

Details

Module test case files form a critical component of BioCro’s regression testing system. For more
details, see the help page for module_testing.

The initialize_csv function will evaluate the module for a set of input quantities and store the
results as a test case csv file. Typically, both of its optional arguments can be omitted. However,
some modules produce errors when all inputs are set to 1.0. In this case, it would be necessary to
supply some nonstandard inputs and (possibly) an alternate case description.

The add_csv_row function will evaluate the module for a set of input quantities, define a test case
from the resulting outputs and the description, and add it to the module’s corresponding csv file. If
no csv file exists, one will be initialized with the new case.

The update_csv_cases function will evaluate the module for all input values specified in its csv
case file and update the stored values of the corresponding outputs. Any output columns not present
in the file will be added automatically and filled in with the correct values. Although the output
columns are optional, the description column must exist in the csv file.

If a module test fails and update_csv_cases is used to update the test, care should be taken to
ensure that the new outputs are sensible. This function should not be used to blindly ensure that
tests pass, since a test failure may indicate a real problem with a module.

Note that update_csv_cases can be used to batch-initialize test cases. To do this, manually create a
test case csv file with the proper name that only includes columns for the inputs and the description;
now, calling update_csv_cases will automatically fill in the outputs for each case. With this
method, care must be taken when manually specifying the values of the description column; the
descriptions must be double quoted, and if they contain internal double quotes, those quotes must
be doubled. Generally it is safest to simply avoid double quotes in the descriptions. (See qmethod
in the help file for write.csv for more details about quoting.)

Value

A message indicating whether a file was created, overwritten, or not written.

26 module_creators

See Also

• modules

• module_paste

• module_testing

• test_module_library

• test_module

Examples

First, we will initialize a test case file for the 'BioCro' library's
'thermal_time_linear' module, which will be saved in a temporary directory as
'BioCro_thermal_time_linear.csv'. Then, we will add a new case to the file.
Finally, we will update the file. Note that the call to `update_csv_cases`
will not actually modify the file unless it is manually edited beforehand to
change an input or output value.

td <- tempdir()

initialize_csv(
'BioCro:thermal_time_linear',
td,
nonstandard_inputs = list(temp = -1),
overwrite = TRUE

)

writeLines(readLines(file.path(td, 'BioCro_thermal_time_linear.csv')))

add_csv_row(
'BioCro:thermal_time_linear',
td,
list(fractional_doy = 101, sowing_fractional_doy = 100, tbase = 20, temp = 44),
'temp above tbase'

)

writeLines(readLines(file.path(td, 'BioCro_thermal_time_linear.csv')))

update_csv_cases('BioCro:thermal_time_linear', td)

module_creators Create instances of modules

Description

Creates pointers to module wrapper objects

Usage

module_creators(module_names)

module_paste 27

Arguments

module_names A vector of module names

Details

This function is used internally by several other BioCro functions, where its purpose is to create
instances of module wrapper pointers using BioCro’s module library and return pointers to those
wrappers. In turn, module wrappers can be used to obtain information about a module’s inputs,
outputs, and other properties, and can also be used to create a module instance. The See Also
section contains a list of functions that directly rely on module_creators.

Although the description of externalptr objects is sparse, they are briefly mentioned in the R
documentation: externalptr-class.

This function should not be used directly, and each module library package must have its own
version. For these reasons, this function is not exported to the package namespace and can only be
accessed using the package name via the ::: operator.

Value

A vector of R externalptr objects that each point to a module_creator C++ object

See Also

• run_biocro

• module_info

• evaluate_module

module_paste Prepend library name to module names

Description

Prepends a library name to a set of module names to create a suitably-formatted set of fully-qualified
module names that can be passed to run_biocro or other BioCro functions.

Usage

module_paste(lib_name, local_module_names)

Arguments

lib_name A string specifying a module library name.
local_module_names

A vector or list of module name strings.

28 module_testing

Details

module_paste is a convenience function for specifying multiple modules from the same library; it
prepends the library name to each module name, preserving the names and class of local_module_names.

Note that a simple call to paste0(lib_name, ':', local_module_names) will produce a similar
output with two important differences: (1) paste0 will not preserve names if local_module_names
has any named elements and (2) paste0 will always return a character vector, even if local_module_names
is a list.

Value

A vector or list of fully-qualified module name strings formatted like lib_name:local_module_name.

See Also

• modules

• run_biocro

Examples

Example: Specifying several modules from the `BioCro` module library.
modules <- module_paste(

'BioCro',
list('total_biomass', canopy_photosynthesis = 'c3_canopy')

)

Compare to the output from `paste0`
modules2 <- paste0(

'BioCro',
':',
list('total_biomass', canopy_photosynthesis = 'c3_canopy')

)

str(modules)
str(modules2)

module_testing The BioCro module testing system

Description

BioCro provides several functions for defining, modifying, and running module test cases. These
functions together allow module developers to easily create regression tests that ensure the modules
continue to function correctly.

Note that module tests are distinct from the model tests described in model_testing.

module_testing 29

Details

Together, test_module_library, test_module, case, cases_from_csv, initialize_csv, add_csv_row,
and update_csv_cases form a simple and convenient system for defining and running module test
cases. Such tests form a critical component of BioCro’s regression testing system, and test cases
should be defined for all BioCro modules in all BioCro module libraries. These functions are not
required in order to use the BioCro package, but they are critical to understand when creating or
modifying modules.

A module test case consists of a set of module inputs, a set of module outputs, and a short description
of the case. To run the test, the inputs are passed to the module, and then the calculated outputs
are compared to the expected ones. If the outputs match, the test is passed; otherwise, it fails. This
operation is handled by the test_module function.

For simple on-the-fly testing, it is possible to define a test case using the case function and run it
using test_module. However, a more robust method is available to facilitate regression testing,
where module test cases are stored in suitably-formatted csv files, allowing multiple test cases to
be defined for each module and easily checked afterwards. If test case files for each module in a
module library are stored in a single directory, all the test cases can be checked with one call to
test_module_library.

In this system, test cases for a module with fully-qualified name module_name must be stored in
module_name.csv, where the colon in the module name has been replaced by an underscore; for ex-
ample, the module named BioCro:total_biomass would be associated with BioCro_total_biomass.csv.
The first row of a test case file must be the quantity types (input or output), the second row must
be the quantity names, and the remaining rows must each specify input quantity values along with
the expected output values they should produce. There must also be a description column (with
description in the first row) containing short descriptions of the test cases. These formatting
requirements will automatically be satisfied for any test case file produced by initialize_csv or
modified by add_csv_row or update_csv_cases. Such files can be read from R using cases_from_csv,
and the resulting case objects can be passed to test_module.

Although it is possible, directly editing the case files is not recommended since initialize_csv,
add_csv_row, and update_csv_cases are easier to use. There are several exceptions to this sug-
gestion: (1) when a case must be deleted, (2) when a module input must be added or removed,
and (3) during the initialization of a test file, where a user may wish to batch-initialize using
update_csv_cases (see its documentation for an explanation of batch-initialization).

Case files can easily be viewed using Excel or other spreadsheet viewers, and are also nicely for-
matted when viewed on the GitHub website for the repository.

Examples of module test case files can be found in the tests/module_test_cases directory, while
code that uses the testthat package to automatically run all the defined test cases for the standard
BioCro module library via test_module_library can be found in the tests/testthat/test.Modules.R
file.

See Also

• modules

• module_case_files

• test_module_library

• test_module

30 module_write

module_write Generate a BioCro module header file.

Description

To facilitate the creation of new BioCro modules, module_write generates a BioCro module header
file. Given a set of input and output variables, module_write will create a C++ header file (’.h’ file)
by filling in a template with the input and output variables, ensuring the correct C++ syntax for a
BioCro module.

Usage

module_write(
module_name,
module_library,
module_type,
inputs,
outputs,
output_equations = NULL,
input_units = NULL,
output_units = NULL

)

Arguments

module_name A string for the module’s name.

module_library A string for the module’s library namespace. E.g., 'biocro'.

module_type A string setting the module type: 'direct' or 'differential'.

inputs A character vector of the module’s input variables.

outputs A character vector of the module’s output variables.
output_equations

A character vector. The module’s output variables will be updated with these
variables. If NULL, a zero is inserted instead.

input_units A character vector of the inputs’ units. If NULL, no units are embedded.

output_units A character vector of the outputs’ units. If NULL, no units are embedded.

Details

type should be either 'direct' or 'differential'; however, module_write does not enforce
this in case new module types are created in the future.

Value

A string containing a new BioCro module header file.

module_write 31

Note

This function returns a string and has no file I/O. Use writeLines to print the output to console, or
to save the output. See examples below. Note that it is customary to name the header file with the
same name as the module.

module_write checks for duplicate input or output variables, and if detected, it will raise an error.
In theory, this check should ensure that the generated module will compile correctly. However, it is
still possible to define an module that is circular and will not pass the checks in validate_dynamical_system_inputs.
See Example 4.

Examples

Example 1
Inputs as character vector
xs = c('x1','x2','x3')

Units
xs_units <- c('Mg / ha', 'Mg / ha / hr', 'dimensionless')

Outputs
ys = c('y1','y2')

out <- module_write('testmod', 'testlib', 'direct',
inputs=xs, input_units= xs_units, outputs=ys)

Use writeLines to print to console
writeLines(out)

Not run:
Use writeLines to save as a `.h` file
writeLines(out, "./testmod.h")

End(Not run)

Example 2: A differential module
xs <- c('var_1','var_2')
out <- module_write('testmod', 'testlib', 'differential', xs, xs)
writeLines(out)

Example 3: A module with pairwise names
Here we use an outer product to generate pairwise combinations of
tissues and pool types
tissues <- c('leaf', 'stem', 'root')
pools <- c('carbon', 'nitrogen')
xs <- as.vector(outer(tissues, pools, paste, sep = '_'))
out <- module_write('testmod', 'testlib', 'differential', xs, xs)
writeLines(out)

Example 4: Circular modules

Not run:
out <- module_write(inputs = c('x' ,'x'))

32 obsBeaC

Will compile, but will cause a "circular quantities" error if it is used
in a BioCro simulation:
out <- module_write('inconsistent', 'examplelib', type='direct',

inputs = 'x', outputs = 'x')

End(Not run)

obsBea Miscanthus assimilation field data

Description

Assimilation in Miscanthus as measured in Beale, Bint, and Long 1996. The first column is the
observed net assimilation rate (micromoles m^-2 s^-1). The second column is the observed quantum
flux (micromoles m^-2 s^-1). The third column is the temperature (degrees Celsius). Relative
humidity was not reported and thus was assumed to be 0.7.

Format

Data frame of dimensions 27 by 4.

Source

C. V. Beale, D. A. Bint, S. P. Long. 1996. Leaf photosynthesis in the C4-grass Miscanthus x
giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot. 47 (2): 267–
273.

obsBeaC Complete Miscanthus assimilation field data

Description

Assimilation and stomatal conductance in Miscanthus as measured in Beale, Bint, and Long 1996.
(Missing data are also included.) The first column is the date, the second the hour. Columns 3 and
4 are assimilation and stomatal conductance respectively.

Format

Data frame of dimensions 35 by 6.

Details

The third column is the observed net assimilation rate (micromoles m^-2 s^-1).

The fifth column is the observed quantum flux (micromoles m^-2 s^-1).

The sixth column is the temperature (degrees Celsius).

obsNaid 33

Source

C. V. Beale, D. A. Bint, S. P. Long. 1996. Leaf photosynthesis in the C4-grass Miscanthus x
giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot. 47 (2): 267–
273.

obsNaid Miscanthus assimilation data

Description

Assimilation in Miscanthus as measured in Naidu et al. (2003). The first column is the observed
net assimilation rate (micromoles m^-2 s^-1). The second column is the observed quantum flux
(micromoles m^-2 s^-1). The third column is the temperature (degrees Celsius). The fourth column
is the observed relative humidity in proportion (e.g. 0.7).

Format

Data frame of dimensions 16 by 4.

Source

S. L. Naidu, S. P. Moose, A. K. AL-Shoaibi, C. A. Raines, S. P. Long. 2003. Cold Tolerance of C4
photosynthesis in Miscanthus x giganteus: Adaptation in Amounts and Sequence of C4 Photosyn-
thetic Enzymes. Plant Physiol. 132 (3): 1688–1697.

partial_application Convenience Functions for Partial Application

Description

Convenience functions for using partial application with BioCro

Usage

partial_run_biocro(
initial_values = list(),
parameters = list(),
drivers,
direct_module_names = list(),
differential_module_names = list(),
ode_solver = BioCro::default_ode_solvers$homemade_euler,
arg_names,
verbose = FALSE

)

partial_evaluate_module(module_name, input_quantities, arg_names)

34 partial_application

Arguments

arg_names A vector of strings specifying input quantities whose values should not be fixed
when using partial application.

initial_values Identical to the corresponding argument from run_biocro.

parameters Identical to the corresponding argument from run_biocro.

drivers Identical to the corresponding argument from run_biocro.
direct_module_names

Identical to the corresponding argument from run_biocro.
differential_module_names

Identical to the corresponding argument from run_biocro.

ode_solver Identical to the corresponding argument from run_biocro.

verbose Identical to the corresponding argument from run_biocro.

module_name Identical to the corresponding argument from evaluate_module.
input_quantities

A list of named numeric elements representing any input quantities required by
the module that are not included in arg_names; any extraneous quantities will
be ignored by the module.

Details

Partial application is the technique of fixing some of the input arguments to a function, producing
a new function with fewer inputs. In the context of BioCro, partial application can often be useful
while varying some parameters, initial values, or drivers while performing optimization or sensitiv-
ity analysis. Optimizers (such as optim) typically require a function with a single input argument,
so the partial application tools provided here help to create such functions.

Both partial_run_biocro and partial_evaluate_module accept the same arguments as their
"regular" counterparts (run_biocro and evaluate_module) with the addition of arg_names, which
specifies the input quantities that should not be fixed.

For partial_run_biocro, each element of arg_names must be the name of a quantity that is one
of the initial_values, parameters, or drivers. For partial_evaluate_module, each element
of arg_names must be the name of one of the module’s input quantities.

When using one of the pre-defined crop growth models, it may be helpful to use the with command
to pass arguments to partial_run_biocro; see the documentation for crop_model_definitions
for more information.

Value
partial_run_biocro

A function that calls run_biocro with all of the inputs (except those specified in
arg_names) set to the values specified by the original call to partial_run_biocro.
The new function has one input (x), which can be a vector or list specifying the
values of the quantities in arg_names. If x has no names, its elements must be
supplied in the same order as in the original arg_names. If x has names, they
must be identical to the elements of arg_names but can be in any order. Ele-
ments of x corresponding to drivers must be vectors having the same length as

partial_application 35

the other drivers; they can be specified as a named element of a list or as sequen-
tial elements of a vector without names. The return value of the new function is
a data frame as would be produced by run_biocro.

partial_evaluate_module

A function that calls evaluate_module with the input quantities (except those
specified in arg_names) set to the values specified by the original call to partial_evaluate_module.
The new function has one input (x), which can be a vector or list specifying the
values of the quantities in arg_names. If x has no names, its elements must
be supplied in the same order as in the original arg_names. If x has names,
they must be identical to the elements of arg_names but can be in any order.
The return value of the new function is a list with two elements (inputs and
outputs), each of which is a list of named numeric elements representing the
module’s input and output values. (Note that this differs from the output of
evaluate_module, which only returns the outputs.)

See Also

• run_biocro

• evaluate_module

Examples

Specify weather data to use in these examples
ex_weather <- get_growing_season_climate(weather$'2005')

Example 1: varying the thermal time values at which senescence starts for
different organs in a simulation; here we set them to the following values
instead of the defaults:
- seneLeaf: 2000 degrees C * day
- seneStem: 2100 degrees C * day
- seneRoot: 2200 degrees C * day
- seneRhizome: 2300 degrees C * day
senescence_simulation <- partial_run_biocro(

miscanthus_x_giganteus$initial_values,
miscanthus_x_giganteus$parameters,
ex_weather,
miscanthus_x_giganteus$direct_modules,
miscanthus_x_giganteus$differential_modules,
miscanthus_x_giganteus$ode_solver,
c('seneLeaf', 'seneStem', 'seneRoot', 'seneRhizome')

)
senescence_result <- senescence_simulation(c(2000, 2100, 2200, 2300))

Example 2: a crude method for simulating the effects of climate change; here
we increase the atmospheric CO2 concentration to 500 ppm and the temperature
by 2 degrees C relative to 2005 temperatures. The commands below that call
`temperature_simulation` all produce the same result.
temperature_simulation <- partial_run_biocro(

miscanthus_x_giganteus$initial_values,
miscanthus_x_giganteus$parameters,
ex_weather,

36 run_biocro

miscanthus_x_giganteus$direct_modules,
miscanthus_x_giganteus$differential_modules,
miscanthus_x_giganteus$ode_solver,
c("Catm", "temp")

)
hot_result_1 <- temperature_simulation(c(500, ex_weather$temp + 2.0))
hot_result_2 <- temperature_simulation(list(Catm = 500, temp = ex_weather$temp + 2.0))
hot_result_3 <- temperature_simulation(list(temp = ex_weather$temp + 2.0, Catm = 500))

Note that these commands will both produce errors:
hot_result_4 <- temperature_simulation(c(Catm = 500, temp = ex_weather$temp + 2.0))
hot_result_5 <- temperature_simulation(stats::setNames(
c(500, ex_weather$temp + 2.0),
c("Catm", rep("temp", length(ex_weather$temp)))
))

Note that this command will produce a strange result where the first
temperature value will be incorrectly interpreted as a `Catm` value, and the
`Catm` value will be interpreted as the final temperature value.
hot_result_6 <- temperature_simulation(c(ex_weather$temp + 2.0, 500))

Example 3: varying the base and air temperature inputs to the
'thermal_time_linear' module from the 'BioCro' module library. The commands
below that call `thermal_time_rate` all produce the same result.
thermal_time_rate <- partial_evaluate_module(

'BioCro:thermal_time_linear',
within(miscanthus_x_giganteus$parameters, {fractional_doy = 1}),
c("temp", "tbase")

)
rate_result_1 <- thermal_time_rate(c(25, 10))
rate_result_2 <- thermal_time_rate(c(temp = 25, tbase = 10))
rate_result_3 <- thermal_time_rate(c(tbase = 10, temp = 25))
rate_result_4 <- thermal_time_rate(list(temp = 25, tbase = 10))
rate_result_5 <- thermal_time_rate(list(tbase = 10, temp = 25))

run_biocro Simulate Crop Growth with BioCro

Description

Runs a full crop growth simulation using the BioCro framework

Usage

run_biocro(
initial_values = list(),
parameters = list(),
drivers,
direct_module_names = list(),
differential_module_names = list(),

run_biocro 37

ode_solver = BioCro::default_ode_solvers$homemade_euler,
verbose = FALSE

)

Arguments

initial_values A list of named quantities representing the initial values of the differential quan-
tities, i.e., the quantities whose derivatives are calculated by differential modules

parameters A list of named quantities that don’t change with time; must include a ’timestep’
parameter (see ‘drivers‘ for more info)

drivers A data frame of quantities with rows at equally spaced time intervals specified
in the ‘parameters‘ as ’timestep’. The drivers must include either (1) ’time’ or
(2) ’doy’ and ’hour’ columns. In the latter case, ’time’ will be automatically
computed from ’doy’ and ’hour’ using add_time_to_weather_data, and the
BioCro:format_time module will be added to the direct modules if it is not
already present.

direct_module_names

A character vector or list of the fully-qualified names of the direct modules to use
in the system; lists of available modules can be obtained via the get_all_modules
function.

differential_module_names

A character vector or list of the fully-qualified names of the differential mod-
ules to use in the system; lists of available modules can be obtained via the
get_all_modules function.

ode_solver A list specifying details about the numerical ODE solver. The required elements
are:

• type: A string specifying the name of the algorithm to use; a list of avail-
able options can be obtained using the get_all_ode_solvers function.

• output_step_size: The output time step size in units of ’timestep’. For
example, if output_step_size is 0.25 and ’timestep’ is 2, the output will
have time points spaced by 0.25 * 2 = 0.5.

• adaptive_rel_error_tol: used to set the relative error tolerance for adap-
tive step size methods

• adaptive_abs_error_tol: used to set the absolute error tolerance for
adaptive step size methods

• adaptive_max_steps: determines how many times an adaptive step size
method will attempt to find a new step size before indicating failure

verbose A logical variable indicating whether or not to print dynamical system valida-
tion information. (More detailed startup information can be obtained with the
validate_dynamical_system_inputs function.)

Details

run_biocro is the most important function in the BioCro package. The input arguments to this
function are used to define a dynamical system and solve for its time evolution during a desired time
period. For more details about how this function operates, see Lochocki et al. (2022) [doi:10.1093/
insilicoplants/diac003].

https://doi.org/10.1093/insilicoplants/diac003
https://doi.org/10.1093/insilicoplants/diac003

38 run_model_test_cases

When using one of the pre-defined crop growth models, it may be helpful to use the with command
to pass arguments to run_biocro; see the documentation for crop_model_definitions for more
information.

Value

A data frame where each column represents one of the quantities included in the simulation (with
the exception of the parameters, since their values are guaranteed to not change with time) and each
row represents a time point

See Also

• get_all_modules

• get_all_ode_solvers

• validate_dynamical_system_inputs

• partial_run_biocro

Examples

Example: running a miscanthus simulation using weather data from 2005
result <- run_biocro(

miscanthus_x_giganteus$initial_values,
miscanthus_x_giganteus$parameters,
get_growing_season_climate(weather$'2005'),
miscanthus_x_giganteus$direct_modules,
miscanthus_x_giganteus$differential_modules,
miscanthus_x_giganteus$ode_solver

)

lattice::xyplot(
Leaf + Stem + Root + Grain ~ TTc,
data=result,
type='l',
auto=TRUE

)

run_model_test_cases Run BioCro model test cases

Description

BioCro models can be tested using test cases, which are sets of known outputs that correspond to
particular inputs. The run_model_test_cases function runs one or more of these tests.

Note that model tests are distinct from the module tests described in module_testing.

Usage

run_model_test_cases(model_test_cases)

run_model_test_cases 39

Arguments

model_test_cases

A list of module test cases, each of which should be created using model_test_case.

Details

The run_model_test_cases function is a key part of the BioCro model testing system. See
model_testing for more information.

For each test case, the following checks will be performed:

• The model definition must be valid according to validate_dynamical_system_inputs.

• The model will be run, which should not cause any errors or warnings.

For each test case where check_outputs was set to TRUE, the following additional checks compar-
ing the new result to a saved result will be performed:

• The new result should have the same number of rows as the old result.

• With the exception of any columns in quantities_to_ignore, all columns in the stored result
should be included in the new result.

• With the exception of any columns in quantities_to_ignore, all columns in the stored result
should have the same values in the new result (to within the specified tolerance). This check
will be made using all.equal with tolerance set to relative_tolerance.

When comparing the values of each column, values will only be checked for every Nth row of the
new result, where N is the value of row_interval specified when defining the test case.

For each test case where check_outputs is TRUE, the stored result should be created using the
update_stored_model_results function.

If any of the above checks fail for any of the supplied test cases, an error will be thrown with a
descriptive message.

Besides the checks above, a warning message will also be sent to the user if there are columns in
the new result that are not included in the saved result.

Value

If no issues are found, the function will return TRUE.

See Also

• model_testing

• model_test_case

• update_stored_model_results

• compare_model_output

40 soil_parameters

Examples

Define and run a test case for the miscanthus model
miscanthus_test_case <- model_test_case(

'miscanthus_x_giganteus',
miscanthus_x_giganteus,
get_growing_season_climate(weather$'2005'),
FALSE

)

run_model_test_cases(
list(
miscanthus_test_case

)
)

soil_parameters Soil properties

Description

A collection of soil property data.

Usage

soil_parameters

Format

A list of named elements, where each element represents the hydraulic properties of one type of
soil. The soil types are defined following the USDA soil texture classification scheme, and 11 of
the 12 possible types are included ("silt" is not available). The following names are used to indicate
the various soil types:

• sand

• loamy_sand

• sandy_loam

• loam

• silt_loam

• sandy_clay_loam

• clay_loam

• silty_clay_loam

• sandy_clay

• silty_clay

• clay

https://en.wikipedia.org/wiki/Soil_texture

soybean 41

For each soil type, the following parameter values are provided:

• soil_silt_content (dimensionless)

• soil_clay_content (dimensionless)

• soil_sand_content (dimensionless)

• soil_air_entry (J / kg)

• soil_b_coefficient (dimensionless)

• soil_saturated_conductivity (J * s / m^3)

• soil_saturation_capacity (dimensionless)

• soil_field_capacity (dimensionless)

• soil_wilting_point (dimensionless)

• soil_bulk_density (Mg / m^3)

Source

These soil property values are based on Table 9.1 from Campbell and Norman’s textbook An
Introduction to Environmental Biophysics (1998). Bulk density values are taken from function
getsoilprop.c from Melanie (Colorado). The bulk density of sand in getsoilprop.c is 0, which
isn’t sensible, and here a value of 1.60 Mg / m^3 is used instead.

The wilting point value of 0.21 (corrected from 0.32) for silty clay loam is based on the list of book
corrections available from Brian Hornbuckle’s teaching website using the Wayback Machine, since
it does not seem to be available on his current site.

soybean Soybean-BioCro model definition

Description

Initial values, parameters, direct modules, differential modules, and a differential equation solver
that can be used to run soybean growth simulations in Champaign, Illinois and other locations.
Along with the soybean circadian clock specifications (soybean_clock), these values define the
soybean growth model of Matthews et al. (2022) [doi:10.1093/insilicoplants/diab032], which is
commonly referred to as Soybean-BioCro.

To represent soybean growth in Champaign, IL, these values must be paired with the Champaign
weather data (cmi_soybean_weather_data). This weather data includes the output from the soy-
bean circadian clock model (soybean_clock), so the clock components do not need to be included
when running a soybean growth simulation using this weather data. The parameters already include
the clay_loam values from the soil_parameters dataset, which is the appropriate soil type for
Champaign.

Some specifications, such as the values of photosynthetic parameters, would remain the same in
any location; others, such as the latitude or longitude, would need to change when simulating crop
growth in different locations. Care must be taken to understand each input quantity before attempt-
ing to run simulations in other places or for other cultivars.

https://web.archive.org/web/20150806180927/http://www.public.iastate.edu/~bkh/teaching/505/norman_book_corrections.pdf
https://faculty.sites.iastate.edu/bkh/teaching
https://doi.org/10.1093/insilicoplants/diab032

42 soybean

Usage

soybean

Format

A list of 5 named elements that are suitable for passing to run_biocro, as described in the help
page for crop_model_definitions.

Details

As improvements are made to the BioCro modules, their behavior changes, and the soybean model
parameters must be updated. Following significant module updates, reparameterization is per-
formed using the same method and data as used in Matthews et al. (2022). The following is a
summary of reparameterizations that have occurred since the original publication of the Soybean-
BioCro model:

• 2023-06-18: Several modules have been updated, and the value of the atmospheric transmit-
tance has been changed from 0.85 to 0.6 based on Campbell and Norman, An Introduction
to Environmental Biophysics, 2nd Edition, Pg 173. Due to these changes, reparameterization
of the following was required: alphaLeaf, alphaRoot, alphaStem, alphaShell, betaLeaf,
betaRoot, betaStem, betaShell, rateSeneLeaf, rateSeneStem, alphaSeneLeaf, betaSeneLeaf,
alphaSeneStem, and betaSeneStem.

• 2023-03-15: Several modules have been updated. The most significant changes are that (1) the
BioCro:no_leaf_resp_neg_assim_partitioning_growth_calculator now reduces the leaf
growth rate in response to water stress and (2) the partitioning modules now include a new tis-
sue type (shell). The new component allows us to distinguish between components of the
soybean pod, where shell represents the pericarp and grain represents the seed. This dis-
tinction has been found to be important for accurately predicting seed biomass, which is more
important in agricultural settings than the entire pod mass, since the pericarp is not included in
typical yield measurements. Due to these changes, reparameterization of the following was re-
quired: alphaLeaf, alphaRoot, alphaStem, alphaShell, betaLeaf, betaRoot, betaStem,
betaShell, rateSeneLeaf, rateSeneStem, alphaSeneLeaf, betaSeneLeaf, alphaSeneStem,
and betaSeneStem. It was also necessary to add a new direct module to the model definition:
BioCro:leaf_water_stress_exponential. This module calculates the fractional reduction
in leaf growth rate due to water stress.

• 2024-09-12: Several changes have been made: (1) The mrc1 and mrc2 were renamed to
grc_stem and grc_root, respectively. These two parameters are used to scale the assimi-
late rate, which is commonly called growth respiration coefficient (grc). (2) A new module,
BioCro:maintenance_respiration, has been added to account for maintenance respiration
during the biomass partitioning. This module removes a fraction from each organ by a con-
stant parameter called mrc_* (e.g., mrc_leaf) and also by a temperature-dependent Q10 scal-
ing factor. Among these mrc_* parameters, mrc_leaf and mrc_stem are set equal to represent
maintenance respiration for the shoot, while mrc_grain is assigned a negligible value to pre-
vent grain biomass reduction at the season end. No decreasing trends have been seen in the
observed data. (3) Parameter optimizations against the 2002-2006 biomass datasets were per-
formed to accommodate these changes.

Whenever a reparameterization is made, this list should be updated, and any vignettes using the
soybean model should be checked to see if any axis limits, etc., need to change.

soybean 43

Source

This model is described in detail in Matthews et al. (2022) [doi:10.1093/insilicoplants/diab032].
Here we make a few notes about some of its components:

• For this model, the ODE solver type should not be boost_rosenbrock or auto (which de-
faults to boost_rosenbrock when a fixed step size Euler ODE solver is not required, as in this
case) since the integration will fail unless the tolerances are stringent (e.g., output_step_size
= 0.01, adaptive_rel_error_tol = 1e-9, adaptive_abs_error_tol = 1e-9).

• For the initial total seed mass per land area, we use the following equation: Number of seeds
per meter * weight per seed / row spacing. The number of seeds per meter is 20 and the
row spacing is 0.38 m, as reported in Morgan et al. (2004) [doi:10.1104/pp.104.043968]. The
weight per seed is based on the average of .12 to .18 grams, as reported by Feedipedia. Thus,
we have an initial biomass of (20 seeds / m) * (0.15 g / seed) / (0.38 m) = 7.89 g / m^2,
equivalent to 0.0789 Mg / ha in the typical BioCro units. Since this model does not have a
seed component, this value is used to determine the initial Leaf, Stem, and Root biomass,
assuming 80% leaf, 10% stem, and 10% root.

• For historical reasons, the seed tissue in this model is called Grain. The entire pod biomass
can be calculated by adding the Grain and Shell biomass.

• For historical reasons, this model includes a Rhizome tissue. Soybean does not have a rhizome,
so the rhizome in the model does not grow or senesce. To achieve this, the kRhizome_emr and
rateSeneRhizome parameters must be set to 0. It is also necessary to specify values for several
other quantities such as alphaSeneRhizome, betaSeneRhizome, and the initial rhizome mass,
although the actual values of these quantities will have no effect on the simulation output.

• For historical reasons, some of the modules that define Soybean-BioCro require input quanti-
ties that are not actually used for any calculations; these "extraneous" parameters are identified
in data/soybean.R.

• The sowing_fractional_doy input to the soybean_development_rate_calculator mod-
ule is set to 0 because Soybean-BioCro uses the weather data to set the sowing time. In other
words, the weather data is truncated so it begins at the beggining of the simulation.

• Leaf reflectance and transmittance in the PAR band are estimated from [doi:10.2134/agronmonogr31.c7],
[doi:10.2134/agronj1971.00021962006300010038x], and [doi:10.2134/agronj1991.00021962008300030026x].
Reflectance and transmittance in the NIR band are from [doi:10.2134/agronmonogr31.c7].

See Also

• run_biocro

• modules

• crop_model_definitions

• soybean_clock

https://doi.org/10.1093/insilicoplants/diab032
https://doi.org/10.1104/pp.104.043968
https://www.feedipedia.org/node/42
https://doi.org/10.2134/agronmonogr31.c7
https://doi.org/10.2134/agronj1971.00021962006300010038x
https://doi.org/10.2134/agronj1991.00021962008300030026x
https://doi.org/10.2134/agronmonogr31.c7

44 soybean_clock

soybean_clock Soybean-BioCro circadian clock model definition

Description

Initial values, parameters, direct modules, differential modules, and a differential equation solver
that can be used to run soybean circadian clock simulations in Champaign, Illinois and other lo-
cations. Along with the soybean growth specifications (soybean), these values define the soybean
growth model of Matthews et al. (2022) [doi:10.1093/insilicoplants/diab032], which is commonly
referred to as Soybean-BioCro.

To represent a soybean circadian clock in Champaign, Illinois, these values must be paired with the
weather data from cmi_weather_data.

Usage

soybean_clock

Format

A list of 5 named elements that are suitable for passing to run_biocro, as described in the help
page for crop_model_definitions.

Source

This model is described in detail in Matthews et al. (2022) [doi:10.1093/insilicoplants/diab032]
and Lochocki & McGrath (2021) [doi:10.1093/insilicoplants/diab016].

Here, we use initial phases for the dawn and dusk oscillators of 200.0 and 80.0 radians, respec-
tively. These values are optimized for simulations beginning at midnight on January 1, and should
require minimal time for transient signals to die down. These values were determined by running
a simulation for one year starting on January 1, and recording the oscillator states at the end of
December 31.

See Also

• run_biocro

• modules

• crop_model_definitions

• soybean

https://doi.org/10.1093/insilicoplants/diab032
https://doi.org/10.1093/insilicoplants/diab032
https://doi.org/10.1093/insilicoplants/diab016

system_derivatives 45

system_derivatives Calculate Derivatives for Differential Quantities

Description

Solving a BioCro model using one of R’s available differential equation solvers

Usage

system_derivatives(
parameters = list(),
drivers,
direct_module_names = list(),
differential_module_names = list()

)

Arguments

parameters Identical to the corresponding argument from run_biocro.

drivers Identical to the corresponding argument from run_biocro.
direct_module_names

Identical to the corresponding argument from run_biocro.
differential_module_names

Identical to the corresponding argument from run_biocro.

Details

system_derivatives accepts the same input arguments as run_biocro with the exceptions of
ode_solver and initial_values; this function is intended to be passed to an ODE solver in R,
which will solve for the system’s time dependence as its diffferential quantities evolve from their
initial values, so ode_solver and initial_values are not required here.

When using one of the pre-defined crop growth models, it may be helpful to use the with command
to pass arguments to system_derivatives; see the documentation for crop_model_definitions
for more information.

Value

The return value of system_derivatives is a function with three inputs (t, differential_quantities,
and parms) that returns derivatives for each of the differential quantities in the dynamical system de-
termined by the original inputs (parameters, drivers, direct_module_names, and differential_module_names).

This function signature and the requirements for its inputs are set by the LSODES function from the
deSolve package. The t input should be a single time value and the differential_quantities
input should be a vector with the names of the differential quantities defined by the modules. parms
is required by LSODES, but we don’t use it for anything.

This function can be passed to LSODES as an alternative integration method, rather than using one
of BioCro’s built-in solvers.

46 system_derivatives

See Also

run_biocro

Examples

Note: Example 3 below may take several minutes to run. Patience is required!

Example 1: calculating a single derivative using a soybean model

soybean_system <- system_derivatives(
soybean$parameters,
soybean_weather$'2002',
soybean$direct_modules,
soybean$differential_modules

)

derivs <- soybean_system(0, unlist(soybean$initial_values), NULL)

Example 2: a simple oscillator with only one module

times = seq(0, 5, by = 1) # times spaced by `timestep`

oscillator_system_derivatives <- system_derivatives(
list(
timestep = 1,
mass = 1,
spring_constant = 1

),
data.frame(time = times),
c(),
'BioCro:harmonic_oscillator'

)

result <- as.data.frame(deSolve::lsodes(
c(position=0, velocity=1),
times,
oscillator_system_derivatives

))

lattice::xyplot(
position + velocity ~ time,
type='l',
auto=TRUE,
data=result

)

Example 3: solving 500 hours of a soybean simulation. This will run slowly
compared to a regular call to `run_biocro`.

soybean_system <- system_derivatives(

test_module 47

soybean$parameters,
soybean_weather$'2002',
soybean$direct_modules,
soybean$differential_modules

)

times = seq(from=0, to=500, by=1)

result <- as.data.frame(deSolve::lsodes(unlist(soybean$initial_values), times, soybean_system))

lattice::xyplot(Leaf + Stem ~ time, type='l', auto=TRUE, data=result)

test_module Run BioCro module test cases

Description

Modules can be tested using test cases, which are sets of known outputs that correspond to particular
inputs. The functions here provide ways to create test cases and test modules.

test_module runs one test case for a module, returning an error message if its output does not
match the expected value.

case helps define test cases for module testing by combining the required elements into a list with
the correct names as required by test_module.

cases_from_csv helps define test cases for module testing by creating a list of test cases from a
csv file.

Note that module tests are distinct from the model tests described in model_testing.

Usage

test_module(module_name, case_to_test)

case(inputs, expected_outputs, description)

cases_from_csv(module_name, directory)

Arguments

module_name A string specifying one BioCro module, formatted like library_name:local_module_name,
where library_name is the name of a library that contains a module with local
name local_module_name; such fully-qualified module names can be formed
manually or with module_paste.

case_to_test A list with three named elements that describe a module test case:

• inputs: A list of module inputs, i.e., a list of named numeric elements
corresponding to the module’s input quantities.

48 test_module

• expected_outputs: A list of expected module outputs, i.e., a list of named
numeric elements corresponding to the expected values of the module’s
output quantities.

• description: A string describing the test case, e.g. "temp below tbase".
The description should be succinct and not contain any newline characters.

inputs See the corresponding entry in test_case above.
expected_outputs

See the corresponding entry in test_case above.

description See the corresponding entry in test_case above.

directory The directory where module test case files are stored, e.g. file.path('tests',
'module_test_cases')

Details

The test_module function forms the basis for the BioCro module testing system. (See module_testing
for more information.) The functions case and cases_from_csv are complementary to test_module
because they help to pass suitably-formatted test cases to test_module.

Value

test_module If the test passes, an empty string; otherwise, an informative message about what
went wrong.

case A list with three named elements (inputs, expected_outputs, and description)
formed from the input arguments.

cases_from_csv A list of test cases created by the case function that are each suitable for passing
to the test_module function.

See Also

• modules

• module_case_files

• module_paste

• module_testing

• test_module_library

Examples

Example 1: Defining an individual test case for the 'BioCro' module library's
'thermal_time_linear' module and running the test. This test will pass, so the
return value will be an empty string: `character(0)`
test_module(

'BioCro:thermal_time_linear',
case(
list(fractional_doy = 101, sowing_fractional_doy = 100, tbase = 20, temp = 44),
list(TTc = 1.0),
'temp above tbase'

)

test_module_library 49

)

Example 2: Defining an individual test case for the 'BioCro' module library's
'thermal_time_linear' module and running the test. This test will fail, so the
return value will be a message indicating the failure.
test_module(

'BioCro:thermal_time_linear',
case(
list(fractional_doy = 101, sowing_fractional_doy = 100, tbase = 20, temp = 44),
list(TTc = 2.0),
'temp above tbase'

)
)

Example 3: Loading a set of test cases from a file and running one of them.
Note: here we use the `initialize_csv` function first to ensure that there is
a properly defined test file in a temporary directory.

td <- tempdir()

module_name <- 'BioCro:thermal_time_linear'
initialize_csv(module_name, td)
cases <- cases_from_csv(module_name, td)
test_module(module_name, cases[[1]])

test_module_library Run module test cases for an entire BioCro module library

Description

Modules can be tested using test cases, which are sets of known outputs that correspond to particular
inputs. The test_module_library function provides a way to run all test cases for all modules in
a BioCro module library.

Note that module tests are distinct from the model tests described in model_testing.

Usage

test_module_library(library_name, directory, modules_to_skip = c())

Arguments

library_name The name of a BioCro module library.

directory The directory where module test case files are stored, e.g. file.path('tests',
'module_test_cases')

modules_to_skip

A vector of local module name strings indicating any modules from the library
that should not be tested. This feature should be used sparingly, since there are
very few legitimate reasons to skip a module test.

50 test_module_library

Details

For each CSV file in the specified directory, test_module_library determines the corresponding
module name and checks to make sure it is part of the specified library. If there are test cases for
modules not in the library, test_module_library throws an error with a message containing the
"unexpected" module test cases.

For each module in the specified library, test_module_library loads stored test cases from the
specified directory and runs each test case, storing information about any test failures or other
issues that may occur. If any problems are detected, test_module_library throws an error with a
message describing the issues.

For an example of how this function can be used along with the testthat package, see tests/testthat/test.Modules.R.

Value

None

See Also

• modules

• module_case_files

• module_testing

• test_module

Examples

Here we will initialize a module test case file in a temporary directory, and
then use `test_module_library` to test it. We will need to skip most of the
modules in the library, since we only have a test case for one of them.

td <- file.path(tempdir(), 'module_test_cases')
dir.create(td, showWarnings = FALSE)

initialize_csv(
'BioCro:thermal_time_linear',
td,
nonstandard_inputs = list(temp = -1),
overwrite = TRUE

)

Get a list of local module names, excluding the module that has a test case
all_modules <- get_all_modules('BioCro')
skip <- all_modules[all_modules != 'BioCro:thermal_time_linear']
skip <- gsub('BioCro:', '', skip)

test_module_library('BioCro', td, skip)

If we attempt to test the entire library, we will get errors since only one
module actually has an associated case file
tryCatch(

{

Time Variable 51

test_module_library('BioCro', td)
},
error = function(e) {print(e)}

)

Time Variable The ‘time‘ variable in BioCro

Description

Even when using an adaptive ODE solver, run_biocro returns values at evenly spaced time inter-
vals given by the ‘timestep‘ parameter. It is assumed that the drivers are provided at intervals spaced
by this ‘timestep‘. To prevent user error, run_biocro will check that the ‘drivers“ are spaced by
‘timestep‘ but to do so, the ‘drivers‘ must contain a ‘time‘.

Details

When differential modules are passed, BioCro will check that the drivers have a ‘time‘ variable that
satisfies: ‘time[n+1] - time[n] = timestep‘ for all ‘n‘ (no checks are required for direct_modules).
BioCro assumes that differential modules return rates-of-change in the same units as ‘timestep‘.

Unless using modules which require time to correpond to a calendar time (a date and time), the
starting ‘time[1]‘ has no special meaning. If ‘time[1] = 0‘ then ‘time‘ is the amount of time that has
passed since the simulation’s start (in the same units as ‘timestep‘).

Certain modules expect ‘time‘ to specify a date and time with respect to the calendar. For most
BioCro simulations, the rates of change are measured per hour, therefore ‘timestep‘ has units hour.

Therefore, the time variable is defined as the number of hours that have passed since midnight
January 1st of the same year. For example for year 2023: + ‘time = 0‘ is ’2023-01-01 00:00:00’ +
‘time = 1‘ is ’2023-01-01 01:00:00’ + ‘time = 50‘is ’2023-01-03 02:00:00’ Note in version 3.1.3
and earlier of BioCro ‘time‘ counted the number of days rather than hours.

update_stored_model_results

Updated stored result for a BioCro model test case

Description

BioCro models can be tested using test cases, which are sets of known outputs that correspond to
particular inputs. The update_stored_model_results function stores the model outputs so they
can be used for testing.

Note that model tests are distinct from the module tests described in module_testing.

Usage

update_stored_model_results(mtc)

52 update_stored_model_results

Arguments

mtc A single module test case, which should be created using model_test_case.

Details

The update_stored_model_results function is a key part of the BioCro model testing system.
See model_testing for more information.

This function will run the model with the supplied drivers and store the results in an appropriately-
named CSV file in the specified directory.

To save space, the values in the result will be rounded using signif, where the number of digits is
specified in the module test case. Also, only every Nth row will be retained, where N is the value
of row_interval specified in the module test case.

The saved result created by this function will be retrieved by run_model_test_cases when check-
ing the test case.

Value

This function has no return value.

See Also

• model_testing

• model_test_case

• run_model_test_cases

• compare_model_output

Examples

Define a test case for the miscanthus model and save the model output to a
temporary directory
miscanthus_test_case <- model_test_case(

'miscanthus_x_giganteus',
miscanthus_x_giganteus,
get_growing_season_climate(weather$'2005'),
TRUE,
tempdir(),
'soil_evaporation_rate'

)

update_stored_model_results(miscanthus_test_case)

The output file's name will be based on the test case description
fpath <- file.path(tempdir(), 'miscanthus_x_giganteus_simulation.csv')

Check that the output file exists and then load it
if (file.exists(fpath)) {

saved_result <- read.csv(fpath)
str(saved_result)

}

willow 53

willow Willow model definition

Description

Initial values, parameters, direct modules, differential modules, and a differential equation solver
that can be used to run willow growth simulations in Champaign, Illinois and other locations.

To represent willow growth in Champaign, IL, these values must be paired with the Champaign
weather data (cmi_weather_data). The parameters already include the clay_loam values from the
soil_parameters dataset, which is the appropriate soil type for Champaign.

Some specifications, such as the values of photosynthetic parameters, would remain the same in
any location; others, such as the latitude or longitude, would need to change when simulating crop
growth in different locations. Care must be taken to understand each input quantity before attempt-
ing to run simulations in other places or for other cultivars.

Usage

willow

Format

A list of 5 named elements that are suitable for passing to run_biocro, as described in the help
page for crop_model_definitions.

Source

This model was originally described in Wang et al. (2015) [doi:10.1111/pce.12556]. Since its
original parameterization, the behavior of several of its core modules has changed as bugs have
been identified and fixed, so this model likely needs to be reparameterized before it can be used for
realistic simulations.

See Also

• run_biocro

• modules

• crop_model_definitions

https://doi.org/10.1111/pce.12556

Index

∗ crop_models
miscanthus_x_giganteus, 17
soybean, 41
soybean_clock, 44
willow, 53

∗ datasets
annualDB, 4
catm_data, 4
cmi_soybean_weather_data, 5
cmi_weather_data, 7
crop_model_definitions, 10
default_ode_solvers, 12
miscanthus_x_giganteus, 17
obsBea, 32
obsBeaC, 32
obsNaid, 33
soil_parameters, 40
soybean, 41
soybean_clock, 44
willow, 53

∗ weather
catm_data, 4
cmi_soybean_weather_data, 5
cmi_weather_data, 7

:::, 27

add_csv_row, 29
add_csv_row (module_case_files), 24
add_time_to_weather_data, 3, 37
all.equal, 20, 39
annualDB, 4
annualDB2 (annualDB), 4

case, 29
case (test_module), 47
cases_from_csv, 29
cases_from_csv (test_module), 47
catm_data, 4
cmi_soybean_weather_data, 5, 11, 41
cmi_weather_data, 7, 11, 17, 44, 53

compare_model_output, 9, 9, 18–21, 39, 52
crop_model_definitions, 10, 13, 18–21, 34,

38, 42–45, 53

default_ode_solvers, 12
dynamical_system, 12

evaluate_module, 11, 27, 34, 35
evaluate_module (modules), 21

get_all, 14
get_all_modules, 23, 37, 38
get_all_modules (get_all), 14
get_all_ode_solvers, 12, 37, 38
get_all_ode_solvers (get_all), 14
get_all_quantities (get_all), 14
get_growing_season_climate, 16

initialize_csv, 29
initialize_csv (module_case_files), 24
invisible, 22

make.unique, 22
miscanthus_x_giganteus, 17, 20
model_test_case, 9, 18, 19, 19, 39, 52
model_testing, 9, 18, 20, 21, 24, 28, 39, 47,

49, 52
module_case_files, 24, 29, 48, 50
module_creators, 26
module_info, 27
module_info (modules), 21
module_paste, 15, 22, 23, 25, 26, 27, 47, 48
module_response_curve, 11
module_response_curve (modules), 21
module_testing, 9, 18, 19, 23, 25, 26, 28, 38,

48, 50, 51
module_write, 30
modules, 11, 15, 18, 21, 26, 28, 29, 43, 44, 48,

50, 53

obsBea, 32

54

INDEX 55

obsBeaC, 32
obsNaid, 33
optim, 34

partial_application, 33
partial_evaluate_module, 23
partial_evaluate_module

(partial_application), 33
partial_run_biocro, 11, 38
partial_run_biocro

(partial_application), 33
paste0, 28

quantity_list_from_names (modules), 21

rbind, 9
run_biocro, 3, 10–13, 15, 16, 18, 20, 27, 28,

34, 35, 36, 42–46, 53
run_model_test_cases, 9, 18–21, 38, 52

signif, 20, 52
soil_parameters, 17, 40, 41, 53
soybean, 11, 20, 41, 44
soybean_clock, 7, 41, 43, 44
soybean_weather

(cmi_soybean_weather_data), 5
system_derivatives, 45

test_module, 26, 29, 47, 50
test_module_library, 26, 29, 48, 49
testthat, 29, 50
time, 3
time (Time Variable), 51
Time Variable, 51

update_csv_cases, 29
update_csv_cases (module_case_files), 24
update_stored_model_results, 18–21, 39,

51

validate_dynamical_system_inputs, 11,
31, 37–39

validate_dynamical_system_inputs
(dynamical_system), 12

weather (cmi_weather_data), 7
willow, 20, 53
with, 11
within, 11
write.csv, 25
writeLines, 31

	add_time_to_weather_data
	annualDB
	catm_data
	cmi_soybean_weather_data
	cmi_weather_data
	compare_model_output
	crop_model_definitions
	default_ode_solvers
	dynamical_system
	get_all
	get_growing_season_climate
	miscanthus_x_giganteus
	model_testing
	model_test_case
	modules
	module_case_files
	module_creators
	module_paste
	module_testing
	module_write
	obsBea
	obsBeaC
	obsNaid
	partial_application
	run_biocro
	run_model_test_cases
	soil_parameters
	soybean
	soybean_clock
	system_derivatives
	test_module
	test_module_library
	Time Variable
	update_stored_model_results
	willow
	Index

