${\bf Package~'Bifactor Indices Calculator'}$

July 21, 2025

Type Package

Title Bifactor Indices Calculator

Version 0.2.2
Maintainer David Dueber <david.dueber@uky.edu></david.dueber@uky.edu>
Description The calculator computes bifactor indices such as explained common variance (ECV), hierarchical Omega (OmegaH), percentage of uncontaminated correlations (PUC), item explained common variance (I-ECV), and more. This package is an R version of the 'Excel' based 'Bifactor Indices Calculator' (Dueber, 2017) <doi:10.13023 edp.tool.01=""> with added convenience features for directly utilizing output from several programs that can fit confirmatory factor analysis or item response models.</doi:10.13023>
License GPL (>= 3)
Encoding UTF-8
LazyData true
Depends R (>= 3.5)
Imports tidyr, lavaan, mirt, MplusAutomation, mnormt
RoxygenNote 7.1.0
URL https://github.com/ddueber/BifactorIndicesCalculator
BugReports https://github.com/ddueber/BifactorIndicesCalculator/issues
Suggests testthat (>= 2.1.0), psych
NeedsCompilation no
Author David Dueber [aut, cre]
Repository CRAN
Date/Publication 2021-05-12 23:02:36 UTC
Contents
ARPB
1

2 ARPB

ARPB	ARPB	
Index		29
	22.5	
	SRS data	
	PUC	
	Omega_S	
	Omega_H	
	MTMM_data	
	isBifactor	
	IECV	
	H	
	getLambda	
	getGen	
	FD	
	ECV_SS	
	ECV_SG	
	ECV_GS	
	cat_Omega_S	
	cat_Omega_H	
		10
	bifactorIndicesMplus_expl	9
	bifactorIndicesMplus_ESEM	8
	bifactorIndicesMplus	7
	BifactorIndicesCalculator	7

Description

ARPB computes absolute relative bias in factor loadings between the general factor of a bifactor model and a unidimensional model.

Usage

ARPB(Lambda, UniLambda)

Arguments

Lambda is a matrix of factor loadings
UniLambda is a matrix of factor loadings

Details

ARPB is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

a list where the first element is the average absolute relative paramter bias, and the second element is a vector of absolute relative bias by item

See Also

bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                   .77, .35,
                                     0,
                   .79, .32,
                   .66, .39,
                               0,
                          0, .71,
                   .51,
                   .56,
                          0, .43,
                    .68,
                          0, .13,
                   .60,
                          0, .50,
                                    0,
                          0,
                   .83,
                               0, .47,
                   .60,
                         0,
                               0, .27,
                   .78,
                         0, 0, .28,
                   .55,
                          0,
                               0, .75),
                   ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
UniLambda <- c(.78, .84, .82, .77, .69, .62, .69, .66, .82, .56, .74, .65)
ARPB(Lambda, UniLambda)
```

bifactorIndices

bifactorIndices

Description

Computes all available bifactor indices for the input given.

```
bifactorIndices(
  Lambda,
  Theta = NULL,
  UniLambda = NULL,
  standardized = TRUE,
  Phi = NULL,
  Thresh = NULL
)
```

Arguments

Lambda is a matrix of factor loadings or an object that can be converted to a matrix of

factor loadings by getLambda. Currently fitted **lavaan** objects and fitted **mirt** objects are supported in addition to raw factor loading matrix input. For Mplus

output files, use bifactorIndicesMplus.

Theta is a vector of residual variances. If omitted, Theta will be computed from input

for Lambda.

UniLambda is a matrix of factor loadings or an object that can be converted to a matrix of

factor loadings such as a fitted lavaan objects or fitted mirt object. Defaults to

NULL, as UniLambda is only required if you wish to compute ARPB.

standardized lets the function know whether to look for standardized or unstandardized re-

sults from lavaan and defaults to TRUE. If Lambda is not a lavaan object, then

standardized will be ignored.

Phi is the correlation matrix of factors and defaults to NULL. User should generally

ignore this parameter. If not provided, bifactorIndices will try to determine Phi from Lambda when Lambda is a fitted lavaan model or will assume it is the

identity matrix otherwise.

Thresh is a list of vectors of item thresholds, used only when items are categorical.bifactorIndices

will try to determine Thresh from Lambda when Lambda is a fitted lavaan model and the indicators are categorical. Thresh defaults to null, which indicates items

are continuous.

Details

Currently, factor loading matrices, fitted **lavaan** objects, and fitted **mirt** objects are supported. For Mplus output, see bifactorIndicesMplus. IRT parameters from **mirt** are converted to standardized factor loadings via the correspondence described in Kamata & Bauer (2008). If you wish to use standardized coefficients, item error variance will be computed directly from standardized factor loadings. ARPB will only be computed if the factor loadings from a unidimensional model are included, while ECV_GS and ECV_SG will only be computed for models with a general factor, and PUC will only be conputed for a true bifactor model. Note that if a correlated traits model is provided, the omega indices will simply be the regular omega values for those factors. Interpretations for individual indices as well as details about their computation can be found in the man page for the individual indices.

Formulas for all indices can be found in Rodriguez et al. (2016). When indicators are categorical, the methodology of Green and Yang (2009) is used for computing Omega and OmegaH.

Value

A list of bifactor indices, including three different ECV indices, IECV, PUC, Omega, OmegaH, Factor Determinacy (FD), Construct Replicability (H) and ARPB. Please note that many of these indices are interpretable even when the model being used is not a bifactor model; some indices may be useful for two-tier, trifactor, correlated traits, and even unidimensional models.

References

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. *Psychometrika*, 74(1), 155-167 doi: 10.1007/s11336-00890993.

Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory models. *Structural Equation Modeling: A Multidisciplinary Journal*, 15 (1), 136-153.

#' Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: calculating and interpreting statistical indices. *Psychological Methods*, 21(2), 137 doi: 10.1037/met0000045.

See Also

bifactorIndicesMplus, bifactorIndices_expl, bifactorIndicesMplus_expl, bifactorIndicesMplus_ESEM, ECV_SS, ECV_SG, ECV_GS, IECV, PUC, Omega_S, Omega_H, cat_Omega_S, cat_Omega_H, H, FD, ARPB

Examples

```
# Computing bifactor indices from fitted lavaan object
# (using mirt object is similar). Use of the unidimensional
# model is optional; it is only used to compute ARPB.
SRS_UnidimensionalModel <-</pre>
  "SRS =~ SRS_1 + SRS_2 + SRS_3 + SRS_4 + SRS_5 +
          SRS_6 + SRS_7 + SRS_8 + SRS_9 + SRS_10 +
          SRS_11 + SRS_12 + SRS_13 + SRS_14 + SRS_15 +
          SRS_16 + SRS_17 + SRS_18 + SRS_19 + SRS_20"
SRS Unidimensional <- lavaan::cfa(SRS UnidimensionalModel.
                                SRS data.
                                ordered = paste0("SRS_", 1:20),
                                orthogonal = TRUE)
SRS_BifactorModel <-
"SRS =~ SRS_1 + SRS_2 + SRS_3 + SRS_4 + SRS_5 +
        SRS_6 + SRS_7 + SRS_8 + SRS_9 + SRS_10 +
        SRS_11 + SRS_12 + SRS_13 + SRS_14 + SRS_15 +
        SRS_16 + SRS_17 + SRS_18 + SRS_19 + SRS_20
 Function = \sim SRS_5 + SRS_9 + SRS_12 + SRS_15 + SRS_18
            =~ SRS_1 + SRS_2 + SRS_8 + SRS_11 + SRS_17
 SelfImage =~ SRS_4 + SRS_6 + SRS_10 + SRS_14 + SRS_19
 MentalHealth =~ SRS_3 + SRS_7 + SRS_13 + SRS_16 + SRS_20"
SRS_bifactor <- lavaan::cfa(SRS_BifactorModel,</pre>
                            SRS_data,
                            ordered = paste0("SRS_", 1:20),
                            orthogonal = TRUE)
bifactorIndices(SRS_bifactor, UniLambda = SRS_Unidimensional)
```

```
# Computing bifactor indices from standardized factor loading matrices
Lambda <- matrix(c(.82, .10, 0,
                                  0,
                   .77, .35, 0, 0,
                   .79, .32, 0, 0,
                   .66, .39, 0, 0,
                   .51, 0, .71, 0,
                   .56, 0, .43, 0,
                   .68, 0, .13, 0,
                   .60, 0, .50, 0,
                   .83,
                          0, 0, .47,
                             0, .27,
                   .60,
                          0,
                   .78,
                          0,
                              0, .28,
                         0,
                              0, .75),
                   .55,
                   ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
bifactorIndices(Lambda)
# bifactorIndices can also be used on two-tier models
MTMM_model <- "
Trait1 = T1M1_1 + T1M1_2 + T1M1_3 +
          T1M2_1 + T1M2_2 + T1M2_3 +
          T1M3_1 + T1M3_2 + T1M3_3
Trait2 = T2M1_1 + T2M1_2 + T2M1_3 +
          T2M2_1 + T2M2_2 + T2M2_3 +
          T2M3_1 + T2M3_2 + T2M3_3
Trait3 = T3M1_1 + T3M1_2 + T3M1_3 +
          T3M2_1 + T3M2_2 + T3M2_3 +
          T3M3_1 + T3M3_2 + T3M3_3
Method1 = T1M1_1 + T1M1_2 + T1M1_3 +
           T2M1_1 + T2M1_2 + T2M1_3 +
           T3M1_1 + T3M1_2 + T3M1_3
Method2 = T1M2_1 + T1M2_2 + T1M2_3 +
           T2M2_1 + T2M2_2 + T2M2_3 +
           T3M2_1 + T3M2_2 + T3M2_3
Method3 =~ T1M3_1 + T1M3_2 + T1M3_3 +
           T2M3_1 + T2M3_2 + T2M3_3 +
           T3M3_1 + T3M3_2 + T3M3_3
Trait1 ~~ 0*Method1
Trait1 ~~ 0*Method2
Trait1 ~~ 0*Method3
Trait2 ~~ 0*Method1
Trait2 ~~ 0*Method2
Trait2 ~~ 0*Method3
Trait3 ~~ 0*Method1
Trait3 ~~ 0*Method2
Trait3 ~~ 0*Method3
Method1 ~~ 0*Method2
Method1 ~~ 0*Method3
```

BifactorIndicesCalculator 7

```
Method2 ~~ 0*Method3"

MTMM_fit <- lavaan::cfa(MTMM_model, MTMM_data)
bifactorIndices(MTMM_fit)</pre>
```

BifactorIndicesCalculator

BifactorIndicesCalculator: A package for computing statistical indices relevant to bifactor measurement models.

Description

The BifactorIndicesCalculator package provides functions use to compute indices described in Rodriguez et al. (2016) for confirmatory or exploratory models.

BifactorIndicesCalculator functions

The BifactorIndicesCalculator package includes helper functions that can compute the various indices from Rodriguez et al. (2016) for fitted **lavaan** or **mirt** objects using **bifactorIndices** and Mplus output files using **bifactorIndicesMplus**. For users of other software and those interested, a matrix of standardized factor loadings can also be input to **bifactorIndices**.

Calculation of bifactor indices for exploratory bifactor models can also be accomplished using bifactorIndices_expl for exploratory models fit using psych or using bifactorIndicesMplus_expl for exploratory models fit using Mplus. For ESEM models fit using Mplus, please use bifactorIndicesMplus_ESEM

References

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: calculating and interpreting statistical indices. *Psychological Methods*, 21(2), 137.

bifactorIndicesMplus bifactorIndicesMplus

Description

Computes all available bifactor indices given an Mplus .out file for a bifactor model

```
bifactorIndicesMplus(
  Lambda = file.choose(),
  UniLambda = NULL,
  standardized = TRUE
)
```

Arguments

Lambda is an Mplus .out file. Defaults to an open file dialog box

UniLambda is an object that the function can convert to a matrix of factor loadings. The

expected behavior is to store an Mplus output file as a variable and pass that variable as UniLambda. Defaults to NULL, as UniLambda is only required if you

wish to compute ARPB.

standardized lets the function know whether it should be looking in the unstandardized results

or the STDYX results from the Mplus output.

Details

To use this function, simply call it without any arguments and a dialog box will pop up for you to select a .out file of a confirmatory bifactor model.

ARPB will only be computed if the factor loadings from a unidimensional model (as a vector or as the result of using readModels on an Mplus .out file) are included. Note that if a correlated traits model is provided, the omega indices will simply be the regular omega values for those factors. Interpretations for individual indices as well as details about their computation can be found in the man page for the individual indices.

Value

A list of bifactor indices, including three different ECV indices, IECV, PUC, Omega, OmegaH, and ARPB. Please note that many of these indices are interpretable even when the model being used is not a bifactor model; some indices may be useful for two-tier, trifactor, correlated traits, and even unidimensional models.

See Also

bifactorIndices, bifactorIndices_expl, bifactorIndicesMplus_expl, bifactorIndicesMplus_ESEM, ECV_SS, ECV_GS, IECV, PUC, Omega_S, Omega_H, H, FD, ARPB

```
bifactorIndicesMplus_ESEM
```

bifactorIndicesMplus_ESEM

Description

Computes all available bifactor indices given an Mplus .out file for a bifactor ESEM

```
bifactorIndicesMplus_ESEM(
  Lambda = file.choose(),
  ItemsBySF = NULL,
  LoadMin = 0.2
)
```

Arguments

Lambda is an Mplus .out file. Defaults to an open file dialog box

ItemsBySF is a list, indexed by factor, of vectors of item names belonging to each factor.

You must NOT include the general factor in this list, and the list must have names which match the factor names in Mplus. Defaults to NULL, in which case composition of specific factors is automated by comparing loadings to LoadMin

LoadMin is the minimum loading size so that an item is considered to "belong" to a fac-

tor. If ItemsBySF is not provided, then items are assigned to factors based on whether their loading on that factor is greater than LoadMin. If ItemsBySF is provided, then warnings are issued whenever items load above LoadMin on factors to which they do not belong, or do not load above LoadMin on factors to

which they do belong,

Details

To use this function, simply call it without any arguments and a dialog box will pop up for you to select a .out file for an ESEM model.

Only standardized models are considered for exploratory models. PUC and ARPB are not supported for exploratory models currently, although that may change.

Value

A list of bifactor indices, including three different ECV indices, Omega, and OmegaH.

See Also

bifactorIndices, bifactorIndicesMplus, bifactorIndicesMplus_expl, bifactorIndices_expl

```
bifactorIndicesMplus_expl
```

bifactorIndicesMplus_expl

Description

Computes all available bifactor indices given an Mplus .out file for a bifactor EFA

```
bifactorIndicesMplus_expl(
  Lambda = file.choose(),
  ItemsBySF = NULL,
  LoadMin = 0.2
)
```

10 bifactorIndices_expl

Arguments

Lambda is an Mplus .out file. Defaults to an open file dialog box

ItemsBySF is a list, indexed by factor, of vectors of item names belonging to each factor.

You must include the general factor in this list, and the list must have names which match the factor names in Mplus. Defaults to NULL, in which case composition of specific factors in automated by comparing loadings to LoadMin

LoadMin is the minimum loading size so that an item is considered to "belong" to a fac-

tor. If ItemsBySF is not provided, then items are assigned to factors based on whether their loading on that factor is greater than LoadMin. If ItemsBySF is provided, then warnings are issued whenever items load above LoadMin on factors to which they do not belong, or do not load above LoadMin on factors to

which they do belong,

Details

To use this function, simply call it without any arguments and a dialog box will pop up for you to select a .out file of an exploratory bifactor model.

EFA models are not currently (3/3/2020) supported by MplsuAutomation::ReadModels(), but they will be in the very near future, at which time this function will be completed.

Value

A list of bifactor indices, including three different ECV indices, Omega, and OmegaH.

See Also

bifactorIndices, bifactorIndicesMplus, bifactorIndicesMplus_ESEM, bifactorIndices_expl

bifactorIndices_expl bifactorIndices_expl

Description

Computes all available bifactor indices for the input given.

Usage

```
bifactorIndices_expl(Lambda, ItemsBySF = NULL, LoadMin = 0.2)
```

Arguments

Lambda is a factor loading matrix from EFA or an object which can be converted to such.

Currently only psych::fa() objects are supported.

cat_Omega_H

ItemsBySF is a list, indexed by factor, of vectors of item names belonging to each specific

factor. You must NOT include the general factor in this list, and the list must have names which match the factor names in Lambda. It is recommended you look at the EFA solution first to see which factor is which. Defaults to NULL, in which case composition of specific factors is automated by comparing loadings

to LoadMin

LoadMin is the minimum loading size so that an item is considered to "belong" to a fac-

tor. If ItemsBySF is not provided, then items are assigned to factors based on whether their loading on that factor is greater than LoadMin. If ItemsBySF is provided, then warnings are issued whenever items load above LoadMin on factors to which they do not belong, or do not load above LoadMin on factors to

which they do belong, LoadMin defaults to 0.2.

Details

Only standardized models are considered for exploratory models. PUC and ARPB are not supported for exploratory models currently, although that may change.

Value

A list of bifactor indices, including three different ECV indices, Omega, and OmegaH.

See Also

bifactorIndices, bifactorIndicesMplus, bifactorIndicesMplus_expl, bifactorIndicesMplus_ESEM, ECV_SS, ECV_GS, IECV, Omega_S, Omega_H, H, FD

Examples

cat_Omega_H

cat_Omega_H

Description

Computes hierarchical omega reliability estimate for all factors as described in Rodriguez, Reise, and Haviland (2016).

12 cat_Omega_H

Usage

```
cat_Omega_H(Lambda, Thresh, Phi = NULL, Denom = NULL)
```

Arguments

Lambda is a matrix of standardized factor loadings

Thresh is a list (indexed by items) of vectors of item thresholds

Phi is the latent variable covariance matrix. Defaults to NULL, and the identity matrix

will be used. No other options are currently available.

Denom specifies how the variance of the total score will be computed. Defaults to NULL,

and the model implied total score variance will be used. No other options are

currently available.

Details

cat_Omega_H is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

A numeric, the hierarchical omega reliability estimate for all factors using the technique of Green and Yang (2009).

References

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: calculating and interpreting statistical indices. *Psychological Methods*, 21(2), 137 doi: 10.1037/met0000045.

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. *Psychometrika*, 74(1), 155-167 doi: 10.1007/s11336-00890993.

See Also

Omega_H, bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,
                 .77, .35,
                            0,
                                 0,
                 .79, .32,
                            0,
                                 0,
                 .66, .39,
                            0,
                                 0,
                       0, .71,
                  .51,
                  .56,
                       0, .43,
                  .68,
                       0, .13,
                  .60,
                       0, .50,
                                 0,
                  .83,
                       0,
                           0, .47,
                  .60, 0, 0, .27,
                  .78, 0, 0, .28,
                  .55, 0,
                           0, .75),
```

cat_Omega_S

```
ncol = 4, byrow = TRUE)

colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")

Thresh = list(c(-1, 0, 1), c(-0.5, 0, 0.5), c(0, 1, 2), c(0, 0.5, 1), c(-2, -1, 0), c(-1, -0.5, 0), c(-1, 0, 2), c(-0.5, 0, 1), c(-2, 0, 1), c(-2, 0, 1), c(-1, 0, 0.5), c(-1, 0, 1), c(-0.5, 0, 0.5))

cat_Omega_H(Lambda, Thresh)
```

cat_Omega_S

cat Omega S

Description

Computes an omega reliability estimate for all factors as described in Rodriguez, Reise, and Haviland (2016).

Usage

```
cat_Omega_S(Lambda, Thresh, Phi = NULL, Denom = NULL)
```

Arguments

Lambda is a matrix of standardized factor loadings

Thresh is a list (indexed by items) of vectors of item thresholds (items must be on a

standardized metric).

Phi is the latent variable covariance matrix. Defaults to NULL, and the identity matrix

will be used. No other options are currently available.

Denom specifies how the variance of the total score will be computed. Defaults to NULL,

and the model implied total score variance will be used. No other options are

currently available.

Details

cat_Omega_S is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

A numeric, the omega reliability estimate for all factors using the technique of Green and Yang (2009).

14 ECV_GS

References

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: calculating and interpreting statistical indices. *Psychological Methods*, *21*(2), 137 doi: 10.1037/met0000045.

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. *Psychometrika*, 74(1), 155-167 doi: 10.1007/s11336-00890993.

See Also

Omega_H, bifactorIndices

Examples

```
0,
Lambda <- matrix(c(.82, .10,</pre>
                                0,
                   .77, .35,
                               0,
                                     0,
                    .79, .32,
                               0,
                                     0,
                   .66, .39,
                               0,
                    .51, 0, .71,
                    .56,
                          0, .43,
                          0, .13,
                    .68,
                          0, .50,
                    .60,
                                     0.
                                0, .47,
                    .83,
                          0,
                    .60,
                          0,
                                0, .27,
                    .78,
                          0,
                                0, .28,
                   .55,
                          0,
                                0, .75),
                   ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
Thresh = list(c(-1, 0, 1), c(-0.5, 0, 0.5),
              c(0, 1, 2),
                            c(0, 0.5, 1),
              c(-2, -1, 0), c(-1, -0.5, 0),
              c(-1, 0, 2), c(-0.5, 0, 1),
              c(-2, 0, 1), c(-1, 0, 0.5),
              c(-1, 0, 1), c(-0.5, 0, 0.5))
cat_Omega_S(Lambda, Thresh)
```

ECV_GS

ECV_GS

Description

Computes an ECV index for all factors which can be interpreted as the proportion of common variance of the items in each specific factor which is due to the general factor; ECV_GS should be read 'ECV of the general factor with respect to a specific factor.' Here, ECV is computed only with respect to the items of a specific factor using the general factor loadings in the numerator; Stucky and Edelen (2015, p. 201) refer to this index as the 'within-domain ECV' for the specific factor. In the Excel version of the bifactor indices calculator (Dueber, 2017), this index is not computed.

ECV_GS 15

Usage

```
ECV_GS(Lambda)
```

Arguments

Lambda

is a matrix of factor loadings. Be sure that all factors have the same variance before calling this function.

Details

ECV_GS is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

A vector of ECVs for all factors

References

Dueber, D. M. (2017). Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. doi: 10.13023/edp.tool.01

Stucky, B. D., & Edelen, M. O. (2015). Using hierarchical IRT models to create unidimensional measures from multidimensional data. In S. P. Reise & D. A. Revicki (Eds.), *Handbook of item response theory modeling: Applications to typical performance assessment* (pp.183-206). New York: Routledge.

See Also

ECV_SS, ECV_SG, bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,
                                     0,
                   .77, .35,
                   .79, .32,
                   .66, .39,
                               0,
                         0, .71,
                   .51,
                   .56,
                         0, .43,
                         0, .13,
                   .68,
                   .60,
                         0, .50,
                   .83,
                          0,
                              0, .47,
                   .60,
                          0,
                               0, .27,
                   .78,
                          0,
                               0, .28,
                               0, .75),
                   .55,
                          0,
                   ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
ECV_GS(Lambda)
```

16 ECV_SG

ECV_SG

 ECV_SG

Description

Computes an ECV index for all factors which can be interpreted as the proportion of common variance of all items which is due to the specific factor; ECV_SG should be read 'ECV of a specific factor with respect to the general factor.' Here, ECV is computed with respect to the items of the general factor using the specific factor loadings in the numerator; Stucky and Edelen (2015, p. 199) refer to this index simply as 'specific-dimension ECV.' Note that ECV_SG of the general factor is simply the ECV. In the Excel version of the Bifactor Indices Calculator (Dueber, 2017), this form of ECV is referred to as 'ECV (S&E).' ECV_SG is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Usage

ECV_SG(Lambda)

Arguments

Lambda

is a matrix of factor loadings. Be sure that all factors have the same variance before calling this function.

Value

A vector of ECVs for all factors

References

Dueber, D. M. (2017). Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. doi: 10.13023/edp.tool.01

Stucky, B. D., & Edelen, M. O. (2015). Using hierarchical IRT models to create unidimensional measures from multidimensional data. In S. P. Reise & D. A. Revicki (Eds.), *Handbook of item response theory modeling: Applications to typical performance assessment* (pp.183-206). New York: Routledge.

See Also

```
ECV_SS, ECV_GS, bifactorIndices
```

Examples

```
Lambda <- matrix(c(.82, .10, 0, 0, .77, .35, 0, 0, .79, .32, 0, 0, .66, .39, 0, 0, .51, 0, .71, 0,
```

ECV_SS 17

```
.56,
                            0, .43,
                     .68,
                            0, .13,
                                       0,
                     .60,
                            0, .50,
                                       0.
                     .83,
                            0,
                                  0, .47,
                     .60,
                            0,
                                  0, .27,
                     .78,
                                  0, .28,
                     .55,
                            0,
                                  0, .75),
                     ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
ECV_GS(Lambda)
```

ECV_SS

 ECV_SS

Description

Computes an ECV index for all factors which can be interpreted as the proportion of common variance of the items in each factor which is due to that factor; ECV_SS should be read 'ECV of a specific factor with respect to itself.' Here, ECV is computed only with respect to items which load on the factor. Note that ECV_SS of the general factor is simply the ECV. Stucky and Edelen (2015, p. 201) do not refer to this form of ECV. In the Excel version of the bifactor indices calculator (Dueber, 2017), this index is referred to as 'ECV (NEW).' ECV_SS is useful in that it can be computed when there is no general factor, such as in a two-tier model, and interpreted in the same way as ECV for general factors.

Usage

ECV_SS(Lambda)

Arguments

Lambda

is a matrix of factor loadings. Be sure that all factors have the same variance before calling this function.

Details

ECV_SS is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users."

Value

A vector of ECVs for all factors

18 FD

References

Dueber, D. M. (2017). Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. doi: 10.13023/edp.tool.01

Stucky, B. D., & Edelen, M. O. (2015). Using hierarchical IRT models to create unidimensional measures from multidimensional data. In S. P. Reise & D. A. Revicki (Eds.), *Handbook of item response theory modeling: Applications to typical performance assessment* (pp.183-206). New York: Routledge.

See Also

ECV_SG, ECV_GS, bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                    .77, .35,
                     .79, .32,
                     .66, .39,
                     .51,
                            0, .71,
                     .56,
                            0, .43,
                            0, .13,
                     .68,
                            0, .50,
                     .60,
                                       0,
                                  0, .47,
                     .83,
                            0,
                     .60,
                            0,
                                  0, .27,
                     .78,
                            0,
                                  0, .28,
                     .55,
                                 0, .75),
                            0,
                    ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
ECV_SS(Lambda)
```

FD

Factor Determinacy

Description

FD computes factor determinacies for all factors provided standardized factor loadings and an interfactor correlation matrix.

Usage

```
FD(Lambda, Phi)
```

Arguments

Lambda

is a matrix of standardized factor loadings

Phi

is the matrix of factor intercorrelations. For bifactor models Phi is diagonal with ones on the diagonal.

getGen 19

Details

FD is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

a vector of factor determinacies.

See Also

bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                    .77, .35,
                                      0,
                    .79, .32,
                                      0,
                    .66, .39,
                                0,
                    .51,
                           0, .71,
                    .56,
                           0, .43,
                    .68,
                           0, .13,
                    .60,
                           0, .50,
                                      0,
                    .83,
                            0,
                                 0, .47,
                                 0, .27,
                    .60,
                            0,
                                 0, .28,
                    .78,
                           0,
                           0,
                                 0, .75),
                    .55,
                    ncol = 4, byrow = TRUE)
Phi <- matrix(c(1, 0, 0, 0,
                 0, 1, 0, 0,
                 0, 0, 1, 0,
                 0, 0, 0, 1), ncol = 4)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
FD(Lambda, Phi)
```

getGen

getGen

Description

getGen detects whether or not a single factor loads on all items, and returns the column index of the general factor if it exists.

Usage

```
getGen(Lambda)
```

Arguments

Lambda

is a factor loading matrix

20 getTheta

Value

The index of the general factor, or NULL if there is no general factor

|--|

Description

getLambda computes or extracts a matrix of factor loadings given some input. Methods exist to support an input of a dataframe, an mplus.model from **MplusAutomation**, a SingleGroupClass object from **mirt**, and a lavaan object from **lavaan**. Please do not use a tibble, as they do not support row names, and it is best if your items are given names.

Usage

```
getLambda(x, standardized = TRUE)
```

Arguments

Χ

an object to be converted into a factor loading matrix, or an object containing a fitted model from which a factor loading matrix will be extracted. Supported classes are data.frame, matrix, mplus.model, lavaan, and SingleGroupClass.

standardized

can be used to specify whether a standardized or unstandardized factor loading matrix should be returned. Only relevant for lavaan and mplus.model input. The standardized matrix for mplus.model is taken from stdyx results.

Value

A matrix of factor loadings

getTheta getTheta

Description

getTheta extracts or computes a vector of residual variance for items. If a factor loading matrix is provided, then the vector of residual variances is computed from that matrix if standardized is TRUE.

```
getTheta(x, standardized = TRUE)
```

H 21

Arguments

x an object that can be converted into a factor loading matrix, or an object con-

taining a fitted model from which a vector of residual variances can be extracted. Supported classes are data.frame, matrix, mplus.model, lavaan,

and SingleGroupClass

standardized can be used to specify whether a standardized or unstandardized factor loading

matrix should be returned. Only relevant for lavaan and mplus.model input.

The standardized matrix for mplus.model is taken from stdyx results.

Value

a vector of residual variances for items. If x is a fitted model, then the residual variances are extracted from the fitted model. **lavaan**, **mirt** (SingleGroupClass), and Mplus (mplus.model) models are supported. If Mplus does not report residual variances for categorical variables, then factor loadings are used to compute the residual variance for standardized models and an error is thrown for unstandardized models. In both cases, the user is alerted that residual variances could not be found in the input and perhaps the model should be rerun.

See Also

getLambda

Н

Construct Replicability

Description

H computes construct replicability for all factors given standardized factor loadings.

Usage

H(Lambda)

Arguments

Lambda

is a matrix of standardized factor loadings

Details

H is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

a vector of construct reliabilities.

IECV IECV

See Also

bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                    .77, .35,
                                      0,
                    .79, .32,
                                 0,
                    .66, .39,
                                 0,
                    .51, 0, .71,
                    .56,
                           0, .43,
                    .68,
                           0, .13,
                           0, .50,
                     .60,
                                       0,
                            0,
                                 0, .47,
                     .83,
                                 0, .27,
                     .60,
                            0,
                     .78,
                            0,
                                 0, .28,
                    .55,
                           0,
                                 0, .75),
                    ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
H(Lambda)
```

IECV IECV

Description

Computes an ECV index for each item which can be interpreted as the proportion of common variance of that item due to the general factor. Stucky and Edelen (2015, p. 201) define I-ECV, which is also computed in the Excel version of the bifactor indices calculator (Dueber, 2017).

Usage

IECV(Lambda)

Arguments

Lambda

is a matrix of factor loadings. Be sure that all factors have the same variance before calling this function.

Details

IECV is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

A vector of item ECVs

isBifactor 23

References

Dueber, D. M. (2017). Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. doi: 10.13023/edp.tool.01

Stucky, B. D., & Edelen, M. O. (2015). Using hierarchical IRT models to create unidimensional measures from multidimensional data. In S. P. Reise & D. A. Revicki (Eds.), *Handbook of item response theory modeling: Applications to typical performance assessment* (pp.183-206). New York: Routledge.

See Also

ECV_SS, ECV_SG, ECV_GS, bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                    .77, .35,
                    .79, .32,
                    .66, .39,
                                      0,
                    .51,
                           0, .71,
                                      0.
                    .56,
                           0, .43,
                                      0,
                    .68,
                           0, .13,
                           0, .50,
                    .60,
                                     0,
                    .83,
                           0,
                                0, .47,
                    .60,
                           0,
                                 0, .27,
                    .78,
                           0,
                                0, .28,
                                 0, .75),
                    .55,
                           0,
                    ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
IECV(Lambda)
```

isBifactor

isBifactor

Description

Determines whether a model has bifactor structure.

Usage

```
isBifactor(Lambda)
```

Arguments

Lambda

Matrix of factor loadings

Omega_H

Value

Logical. If each item loads on a general factor and at most one specific factor, returns TRUE. Otherwise FALSE.

MTMM_data

Simulated data for multi-trait multi-method

Description

A dataset containing 500 responses to a hypothetical 27 item instrument measuring three traits from three different sources. Each trait is measured by 3 items collected from each of three sources (methods).

Usage

MTMM_data

Format

A data frame with 500 rows and 27 columns The item names indicate the trait number, method number, and item number

Omega_H

OmegaH

Description

Computes hierarchical omega reliability estimate for all factors as described in Rodriguez, Reise, and Haviland (2016).

Usage

Omega_H(Lambda, Theta)

Arguments

Lambda is a matrix of factor loadings

Theta is a vector of indicator error variances

Details

Omega_H is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Omega_S 25

Value

A numeric, the omega reliability estimate for all factors.

References

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological Methods, 21(2), 137 doi: 10.1037/met0000045.

See Also

Omega_S, bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                    .77, .35,
                    .79, .32,
                    .66, .39,
                          0, .71,
                    .51,
                    .56,
                          0, .43,
                    .68,
                          0, .13,
                                     0,
                    .60,
                          0, .50,
                                     0,
                          0, 0, .47,
                    .83,
                               0, .27,
                    .60,
                          0,
                    .78,
                          0,
                                0, .28,
                    .55,
                           0,
                                0, .75),
                   ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
Theta <- rep(1, nrow(Lambda)) - rowSums(Lambda^2)</pre>
Omega_H(Lambda, Theta)
```

 ${\tt Omega_S}$

Omega_S

Description

Computes an omega reliability estimate for all factors as described in Rodriguez, Reise, and Haviland (2016).

Usage

```
Omega_S(Lambda, Theta)
```

Arguments

Lambda is a matrix of factor loadings

Theta is a vector of indicator error variances

26 PUC

Details

Omega_S is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

A numeric, the omega reliability estimate for all factors.

References

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: calculating and interpreting statistical indices. *Psychological Methods*, *21*(2), 137 doi: 10.1037/met0000045.

See Also

Omega_H, bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                    .77, .35,
                                 0,
                     .79, .32,
                                 0,
                     .66, .39,
                                 0,
                     .51, 0, .71,
                            0, .43,
                     .56,
                            0, .13,
                     .68,
                            0, .50,
                     .60,
                                       0,
                     .83,
                            0,
                                 0, .47,
                     .60,
                            0,
                                 0, .27,
                     .78,
                            0,
                                 0, .28,
                     .55,
                            0,
                                 0, .75),
                    ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
Theta <- rep(1, nrow(Lambda)) - rowSums(Lambda^2)</pre>
Omega_S(Lambda, Theta)
```

PUC PUC

Description

PUC computes the proportion of uncontaminated correlations for a bifactor mode

Usage

PUC(Lambda)

SRS_data 27

Arguments

Lambda

is a matrix of factor loadings

Details

PUC is called by bifactorIndices and the various convenience functions for exploratory models and/or Mplus output, which are the only functions in this package intended for casual users.

Value

numeric

See Also

bifactorIndices

Examples

```
Lambda <- matrix(c(.82, .10,</pre>
                  .77, .35,
                  .79, .32,
                  .66, .39,
                        0, .71,
                  .51,
                  .56, 0, .43,
                  .68, 0, .13,
                  .60, 0, .50,
                  .83, 0, 0, .47,
                  .60, 0, 0, .27,
                  .78,
                        0,
                             0, .28,
                             0, .75),
                  .55,
                        0,
                  ncol = 4, byrow = TRUE)
colnames(Lambda) <- c("General", "SF1", "SF2", "SF3")</pre>
PUC(Lambda)
```

SRS_data

Response Data to the SRS-22r

Description

A dataset containing 500 responses to the 20 item SRS-22r scoliosis quality of life outcome measure.

Usage

SRS_data

28 SRS_data

Format

A data frame with 500 rows and 20 columns Rownames indicate the item number

Details

The Function subscale consists of items 5, 9, 12, 15, and 18. The Pain subscale consists of items 1, 2, 8, 11, and 17. The SelfImage subscale consists of items 4, 6, 10, 14, and 19. The MentalHealth subscale consists of items 3, 7, 13, 16, and 20.

Index

```
* datasets
    MTMM_data, 24
    SRS_data, 27
ARPB, 2, 4, 5, 8
bifactorIndices, 2, 3, 3, 7–19, 21–27
bifactorIndices_expl, 5, 7-10, 10
BifactorIndicesCalculator, 7
bifactorIndicesMplus, 4, 5, 7, 7, 9-11
bifactorIndicesMplus_ESEM, 5, 7, 8, 8, 10,
         11
bifactorIndicesMplus_expl, 5, 7-9, 9, 11
cat_Omega_H, 5, 11
cat_Omega_S, 5, 13
ECV_GS, 4, 5, 8, 11, 14, 16, 18, 23
ECV_SG, 4, 5, 8, 11, 15, 16, 18, 23
ECV_SS, 5, 8, 11, 15, 16, 17, 23
FD, 5, 8, 11, 18
getGen, 19
getLambda, 4, 20, 21
getTheta, 20
H, 5, 8, 11, 21
IECV, 5, 8, 11, 22
isBifactor, 23
MTMM_data, 24
Omega_H, 5, 8, 11, 12, 14, 24, 26
Omega_S, 5, 8, 11, 25, 25
PUC, 4, 5, 8, 26
readModels, 8
SRS_data, 27
```