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applySettingsDefault Provides the default settings for the different samplers in runMCMC

Description

Provides the default settings for the different samplers in runMCMC

Usage

applySettingsDefault(settings = NULL, sampler = "DEzs", check = FALSE)

Arguments

settings optional list with parameters that will be used instead of the defaults

sampler one of the samplers in runMCMC

check logical determines whether parameters should be checked for consistency

Details

see runMCMC
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Author(s)

Florian Hartig

BayesianTools BayesianTools

Description

A package with general-purpose MCMC and SMC samplers, as well as plots and diagnostic func-
tions for Bayesian statistics

Details

A package with general-purpose MCMC and SMC samplers, as well as plots and diagnostic func-
tions for Bayesian statistics, particularly for process-based models.

The package contains 2 central functions, createBayesianSetup, which creates a standardized
Bayesian setup with likelihood and priors, and runMCMC, which allows to run various MCMC and
SMC samplers.

The package can of course also be used for general (non-Bayesian) target functions.

To use the package, a first step is to use createBayesianSetup to create a BayesianSetup, which
usually contains prior and likelihood densities, or in general a target function.

Those can be sampled with runMCMC, which can call a number of general purpose Metropolis sam-
pler, including the Metropolis that allows to specify various popular Metropolis variants such
as adaptive and/or delayed rejection Metropolis; two variants of differential evolution MCMC DE,
DEzs, two variants of DREAM DREAM and DREAMzs, the Twalk MCMC, and a Sequential Monte
Carlo sampler smcSampler.

The output of runMCMC is of class mcmcSampler / smcSampler if one run is performed, or mcm-
cSamplerList / smcSamplerList if several sampler are run. Various functions are available for plot-
ting, model comparison (DIC, marginal likelihood), or to use the output as a new prior.

For details on how to use the packgage, run vignette("BayesianTools", package="BayesianTools").

To get the suggested citation, run citation("BayesianTools")

To report bugs or ask for help, post a reproducible example via the BayesianTools issue tracker on
GitHub.

Acknowledgements: The creation and maintenance of this package profited from funding and col-
laboration through Cost Action FP 1304 PROFOUND, DFG DO 786/12-1 CONECT, EU FP7 ERA-
NET Sumforest REFORCE and Bayklif Project BLIZ.

https://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example
https://github.com/florianhartig/BayesianTools/issues
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calibrationTest Simulation-based calibration tests

Description

This function performs simulation-based calibration tests based on the idea that posteriors averaged
over the prior should yield the prior.

Usage

calibrationTest(posteriorList, priorDraws, ...)

Arguments

posteriorList a list with posterior samples. List items must be of a class that is supported by
getSample. This includes BayesianTools objects, but also matrix and data.frame

priorDraws a matrix with parameter values, drawn from the prior, that were used to simulate
the data underlying the posteriorList. If colnames are provided, these will be
used in the plots

... arguments to be passed to getSample. Consider in particular the thinning op-
tion.

Details

The purpose of this function is to evaluate the results of a simulation-based calibration of an MCMC
analysis.

Briefly, the idea is to repeatedly

1. sample parameters from the prior,

2. simulate new data based on these parameters,

3. calculate the posterior for these data

If the sampler and the likelihood are implemented correctly, the average over all the posterior dis-
tribution should then again yield the prior (e.g. Cook et al., 2006).

To test if this is the case, we implement the methods suggested by Talts et al., which is to calculate
the rank statistics between the parameter draws and the posterior draws, which we then formally
evaluate with a qq unif plot, and a ks.test

I speculate that a ks.test between the two distribution would likely give an identical result, but this
is not noted in Talts et al.

Cook, S. R., Gelman, A. and Rubin, D. B. (2006). Validation of Software for Bayesian Models
Using Posterior Quantiles. J. Comput. Graph. Stat. 15 675-692.

Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. "Validating
Bayesian Inference Algorithms with Simulation-Based Calibration." arXiv preprint arXiv:1804.06788
(2018).
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Note

This function was implemented for the tests in Maliet, Odile, Florian Hartig, and Hélène Morlon. "A
model with many small shifts for estimating species-specific diversification rates." Nature ecology
& evolution 3.7 (2019): 1086-1092. The code linked with this paper provides a further example of
its use.

Author(s)

Florian Hartig

checkBayesianSetup Checks if an object is of class ’BayesianSetup’

Description

Function used to assure that an object is of class ’BayesianSetup’. If you pass a function, it is
coverted to an object of class ’BayesianSetup’ (using createBayesianSetup) before it is returned.

Usage

checkBayesianSetup(bayesianSetup, parallel = F)

Arguments

bayesianSetup either object of class bayesianSetup or a log posterior function

parallel if bayesianSetup is a function, this will set the parallelization option for the
class BayesianSetup that is created internally. If bayesianSetup is already a
BayesianSetup, then this will check if parallel = T is requested but not supported
by the BayesianSetup. This option is for internal use in the samplers

Note

The recommended option to use this function in the samplers is to have parallel with default NULL
in the samplers, so that checkBayesianSetup with a function will create a bayesianSetup without
parallelization, while it will do nothing with an existing BayesianSetup. If the user sets paral-
lelization, it will set the approriate parallelization for a function, and check in case of an existing
BayesianSetup. The checkBayesianSetup call in the samplers should then be followed by a check
for parallel = NULL in sampler, in which case paralell can be set from the BayesianSetup

Author(s)

Florian Hartig

See Also

createBayesianSetup
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convertCoda Convert coda::mcmc objects to BayesianTools::mcmcSampler

Description

Function is used to make the plot and diagnostic functions available for coda::mcmc objects

Usage

convertCoda(sampler, names = NULL, info = NULL, likelihood = NULL)

Arguments

sampler An object of class mcmc or mcmc.list

names vector giving the parameter names (optional)

info matrix (or list with matrices for mcmc.list objects) with three coloumns contain-
ing log posterior, log likelihood and log prior of the sampler for each time step
(optional; but see Details)

likelihood likelihood function used in the sampling (see Details)

Details

The parameter ’likelihood’ is optional for most functions but can be needed e.g for using the DIC
function.

Also the parameter info is optional for most uses. However for some functions (e.g. MAP) the matrix
or single coloumns (e.g. log posterior) are necessary for the diagnostics.

correlationPlot Flexible function to create correlation density plots

Description

Flexible function to create correlation density plots

Usage

correlationPlot(
mat,
density = "smooth",
thin = "auto",
method = "pearson",
whichParameters = NULL,
scaleCorText = T,
...

)
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Arguments

mat object of class "bayesianOutput" or a matrix or data frame of variables

density type of plot to do. Either "smooth" (default), "corellipseCor", or "ellipse"

thin thinning of the matrix to make things faster. Default is to thin to 5000

method method for calculating correlations. Possible choices are "pearson" (default),
"kendall" and "spearman"

whichParameters

indices of parameters that should be plotted

scaleCorText should the text to display correlation be scaled to the strength of the correlation

... additional parameters to pass on to the getSample, for example parametersOnly
=F, or start = 1000

Author(s)

Florian Hartig

References

The code for the correlation density plot originates from Hartig, F.; Dislich, C.; Wiegand, T. & Huth,
A. (2014) Technical Note: Approximate Bayesian parameterization of a process-based tropical
forest model. Biogeosciences, 11, 1261-1272.

See Also

marginalPlot
plotTimeSeries
tracePlot

Examples

## Generate a test likelihood function.
ll <- generateTestDensityMultiNormal(sigma = "no correlation")

## Create a BayesianSetup object from the likelihood
## is the recommended way of using the runMCMC() function.
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))

## Finally we can run the sampler and have a look
settings = list(iterations = 1000)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

## Correlation density plots:
correlationPlot(out)

## additional parameters can be passed to getSample (see ?getSample for further information)
## e.g. to select which parameters to show or thinning (faster plot)
correlationPlot(out, scaleCorText = FALSE, thin = 100, start = 200, whichParameters = c(1,2))
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## text to display correlation will be not scaled to the strength of the correlation
correlationPlot(out, scaleCorText = FALSE)

## We can also switch the method for calculating correllations
correlationPlot(out, scaleCorText = FALSE, method = "spearman")

createBayesianSetup Creates a standardized collection of prior, likelihood and posterior
functions, including error checks etc.

Description

Creates a standardized collection of prior, likelihood and posterior functions, including error checks
etc.

Usage

createBayesianSetup(
likelihood,
prior = NULL,
priorSampler = NULL,
parallel = FALSE,
lower = NULL,
upper = NULL,
best = NULL,
names = NULL,
parallelOptions = list(variables = "all", packages = "all", dlls = NULL),
catchDuplicates = FALSE,
plotLower = NULL,
plotUpper = NULL,
plotBest = NULL

)

Arguments

likelihood log likelihood density function

prior either a prior class (see createPrior) or a log prior density function

priorSampler if a prior density (and not a prior class) is provided to prior, the optional prior
sampling function can be provided here

parallel parallelization option. Default is F. Other options include T, or "external". See
details.

lower vector with lower prior limits

upper vector with upper prior limits

best vector with best prior values
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names optional vector with parameter names
parallelOptions

list containing three lists. First "packages" determines the R packages necessary
to run the likelihood function. Second "variables" the objects in the global envi-
ronment needed to run the likelihood function and third "dlls" the DLLs needed
to run the likelihood function (see Details and Examples).

catchDuplicates

Logical, determines whether unique parameter combinations should only be
evaluated once. Only used when the likelihood accepts a matrix with param-
eter as columns.

plotLower vector with lower limits for plotting

plotUpper vector with upper limits for plotting

plotBest vector with best values for plotting

Details

If prior is of class prior (e.g. create with createPrior), priorSampler, lower, upper and best will
be ignored.
If prior is a function (log prior density), priorSampler (custom sampler), or lower/upper (uniform
sampler) is required.
If prior is NULL, and lower and upper are passed, a uniform prior (see createUniformPrior) will
be created with boundaries lower and upper.

For parallelization, Bayesiantools requies that the likelihood can evaluate several parameter vectors
(supplied as a matrix) in parallel.

• parallel = T means that an automatic parallelization of the likelihood via a standard R socket
cluster is attempted, using the function generateParallelExecuter. By default, of the N
cores detected on the computer, N-1 cores are requested. Alternatively, you can provide a
integer number to parallel, specifying the cores reserved for the cluster. When the cluster is
cluster is created, a copy of your workspace, including DLLs and objects are exported to the
cluster workers. Because this can be very inefficient, you can explicitly specify the packages,
objects and DLLs that are to be exported via parallelOptions. Using parallel = T requires that
the function to be parallelized is well encapsulate, i.e. can run on a shared memory / shared
hard disk machine in parallel without interfering with each other.

If automatic parallelization cannot be done (e.g. because dlls are not thread-safe or write to shared
disk), and only in this case, you should specify parallel = "external". In this case, it is assumed
that the likelihood is programmed such that it accepts a matrix with parameters as columns and the
different model runs as rows. It is then up to the user if and how to parallelize this function. This
option gives most flexibility to the user, in particular for complicated parallel architecture or shared
memory problems.

For more details on parallelization, make sure to read both vignettes, in particular the section on
the likelihood in the main vignette, and the section on parallelization in the vignette on interfacing
models.

Author(s)

Florian Hartig, Tankred Ott
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See Also

checkBayesianSetup
createLikelihood
createPrior

Examples

ll <- function(x) sum(dnorm(x, log = TRUE))

test <- createBayesianSetup(ll, prior = NULL, priorSampler = NULL, lower = -10, upper = 10)
str(test)
test$prior$density(0)

test$likelihood$density(c(1,1))
test$likelihood$density(1)
test$posterior$density(1)
test$posterior$density(1, returnAll = TRUE)

test$likelihood$density(matrix(rep(1,4), nrow = 2))
#test$posterior$density(matrix(rep(1,4), nrow = 2), returnAll = TRUE)
test$likelihood$density(matrix(rep(1,4), nrow = 4))

## Not run:

## Example of how to use parallelization using the VSEM model
# Note that the parallelization produces overhead and is not always
# speeding things up. In this example, due to the small
# computational cost of the VSEM the parallelization is
# most likely to reduce the speed of the sampler.

# Creating reference data
PAR <- VSEMcreatePAR(1:1000)
refPars <- VSEMgetDefaults()
refPars[12,] <- c(0.2, 0.001, 1)
rownames(refPars)[12] <- "error-sd"

referenceData <- VSEM(refPars$best[1:11], PAR)
obs = apply(referenceData, 2, function(x) x + rnorm(length(x),

sd = abs(x) * refPars$best[12]))

# Selecting parameters
parSel = c(1:6, 12)

## Builidng the likelihood function
likelihood <- function(par, sum = TRUE){

x = refPars$best
x[parSel] = par
predicted <- VSEM(x[1:11], PAR)
diff = c(predicted[,1:3] - obs[,1:3])
llValues = dnorm(diff, sd = max(abs(c(predicted[,1:3])),0.0001) * x[12], log = TRUE)
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if (sum == False) return(llValues)
else return(sum(llValues))

}

# Prior
prior <- createUniformPrior(lower = refPars$lower[parSel], upper = refPars$upper[parSel])

## Definition of the packages and objects that are exported to the cluster.
# These are the objects that are used in the likelihood function.
opts <- list(packages = list("BayesianTools"), variables = list("refPars", "obs", "PAR" ),

dlls = NULL)

# Create Bayesian Setup
BSVSEM <- createBayesianSetup(likelihood, prior, best = refPars$best[parSel],

names = rownames(refPars)[parSel], parallel = 2,
parallelOptions = opts)

## The bayesianSetup can now be used in the runMCMC function.
# Note that not all samplers can make use of parallel
# computing.

# Remove the Bayesian Setup and close the cluster
stopParallel(BSVSEM)
rm(BSVSEM)

## End(Not run)

createBetaPrior Convenience function to create a beta prior

Description

Convenience function to create a beta prior

Usage

createBetaPrior(a, b, lower = 0, upper = 1)

Arguments

a shape1 of the beta distribution
b shape2 of the beta distribution
lower lower values for the parameters
upper upper values for the parameters

Details

This creates a beta prior, assuming that lower / upper values for parameters are are fixed. The beta
is the calculated relative to this lower / upper space.
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Note

for details see createPrior

Author(s)

Florian Hartig

See Also

createPriorDensity
createPrior
createTruncatedNormalPrior
createUniformPrior
createBayesianSetup

Examples

# the BT package includes a number of convenience functions to specify
# prior distributions, including createUniformPrior, createTruncatedNormalPrior
# etc. If you want to specify a prior that corresponds to one of these
# distributions, you should use these functions, e.g.:

prior <- createUniformPrior(lower = c(0,0), upper = c(0.4,5))

prior$density(c(2, 3)) # outside of limits -> -Inf
prior$density(c(0.2, 2)) # within limits, -0.6931472

# All default priors include a sampling function, i.e. you can create
# samples from the prior via
prior$sampler()
# [1] 0.2291413 4.5410389

# if you want to specify a prior that does not have a default function,
# you should use the createPrior function, which expects a density and
# optionally a sampler function:

density = function(par){
d1 = dunif(par[1], -2,6, log =TRUE)
d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
return(d1 + d2)

}

sampler = function(n=1){
d1 = runif(n, -2,6)
d2 = rnorm(n, mean= 2, sd = 3)
return(cbind(d1,d2))

}

prior <- createPrior(density = density, sampler = sampler,
lower = c(-10,-20), upper = c(10,20), best = NULL)
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# note that the createPrior supports additional truncation

# To use a prior in an MCMC, include it in a BayesianSetup

set.seed(123)
ll <- function(x) sum(dnorm(x, log = TRUE)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)

settings = list(iterations = 100)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)

# use createPriorDensity to create a new (estimated) prior from MCMC output

newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10, lower = c(-10,-20),
upper = c(10,20), best = NULL, scaling = 0.5)

createLikelihood Creates a standardized likelihood class#’

Description

Creates a standardized likelihood class#’

Usage

createLikelihood(
likelihood,
names = NULL,
parallel = F,
catchDuplicates = T,
sampler = NULL,
parallelOptions = NULL

)

Arguments

likelihood Log likelihood density

names Parameter names (optional)

parallel parallelization , either i) no parallelization –> F, ii) native R parallelization –>
T / "auto" will select n-1 of your available cores, or provide a number for how
many cores to use, or iii) external parallelization –> "external". External means
that the likelihood is already able to execute parallel runs in form of a matrix
with
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catchDuplicates

Logical, determines whether unique parameter combinations should only be
evaluated once. Only used when the likelihood accepts a matrix with param-
eter as columns.

sampler sampler
parallelOptions

list containing two lists. First "packages" determines the R packages necessary
to run the likelihood function. Second "objects" the objects in the global envirn-
ment needed to run the likelihood function (for details see createBayesianSetup).

Author(s)

Florian Hartig

See Also

likelihoodIidNormal
likelihoodAR1

createMcmcSamplerList Convenience function to create an object of class mcmcSamplerList
from a list of mcmc samplers

Description

Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers

Usage

createMcmcSamplerList(mcmcList)

Arguments

mcmcList a list with each object being an mcmcSampler

Value

Object of class "mcmcSamplerList"

Author(s)

Florian Hartig
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createMixWithDefaults Allows to mix a given parameter vector with a default parameter vec-
tor

Description

This function is deprecated and will be removed by v0.2.

Usage

createMixWithDefaults(pars, defaults, locations)

Arguments

pars vector with new parameter values

defaults vector with defaukt parameter values

locations indices of the new parameter values

createPosterior Creates a standardized posterior class

Description

Creates a standardized posterior class

Usage

createPosterior(prior, likelihood)

Arguments

prior prior class

likelihood Log likelihood density

Details

Function is internally used in createBayesianSetup to create a standarized posterior class.

Author(s)

Florian Hartig
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createPrior Creates a standardized prior class

Description

Creates a standardized prior class

Usage

createPrior(
density = NULL,
sampler = NULL,
lower = NULL,
upper = NULL,
best = NULL

)

Arguments

density Prior density

sampler Sampling function for density (optional)

lower vector with lower bounds of parameters

upper vector with upper bounds of parameter

best vector with "best" parameter values

Details

This is the general prior generator. It is highly recommended to not only implement the density, but
also the sampler function. If this is not done, the user will have to provide explicit starting values
for many of the MCMC samplers. Note the existing, more specialized prior function. If your prior
can be created by those, they are preferred. Note also that priors can be created from an existing
MCMC output from BT, or another MCMC sample, via createPriorDensity.

Note

min and max truncate, but not re-normalize the prior density (so, if a pdf that integrated to one is
truncated, the integral will in general be smaller than one). For MCMC sampling, this doesn’t make
a difference, but if absolute values of the prior density are a concern, one should provide a truncated
density function for the prior.

Author(s)

Florian Hartig
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See Also

createPriorDensity
createBetaPrior
createUniformPrior
createTruncatedNormalPrior
createBayesianSetup

Examples

# the BT package includes a number of convenience functions to specify
# prior distributions, including createUniformPrior, createTruncatedNormalPrior
# etc. If you want to specify a prior that corresponds to one of these
# distributions, you should use these functions, e.g.:

prior <- createUniformPrior(lower = c(0,0), upper = c(0.4,5))

prior$density(c(2, 3)) # outside of limits -> -Inf
prior$density(c(0.2, 2)) # within limits, -0.6931472

# All default priors include a sampling function, i.e. you can create
# samples from the prior via
prior$sampler()
# [1] 0.2291413 4.5410389

# if you want to specify a prior that does not have a default function,
# you should use the createPrior function, which expects a density and
# optionally a sampler function:

density = function(par){
d1 = dunif(par[1], -2,6, log =TRUE)
d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
return(d1 + d2)

}

sampler = function(n=1){
d1 = runif(n, -2,6)
d2 = rnorm(n, mean= 2, sd = 3)
return(cbind(d1,d2))

}

prior <- createPrior(density = density, sampler = sampler,
lower = c(-10,-20), upper = c(10,20), best = NULL)

# note that the createPrior supports additional truncation

# To use a prior in an MCMC, include it in a BayesianSetup

set.seed(123)
ll <- function(x) sum(dnorm(x, log = TRUE)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)
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settings = list(iterations = 100)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)

# use createPriorDensity to create a new (estimated) prior from MCMC output

newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10, lower = c(-10,-20),
upper = c(10,20), best = NULL, scaling = 0.5)

createPriorDensity Fits a density function to a multivariate sample

Description

Fits a density function to a multivariate sample

Usage

createPriorDensity(
sampler,
method = "multivariate",
eps = 1e-10,
lower = NULL,
upper = NULL,
best = NULL,
scaling = 1,
...

)

Arguments

sampler an object of class BayesianOutput or a matrix

method method to generate prior - default and currently only option is multivariate

eps numerical precision to avoid singularity

lower vector with lower bounds of parameter for the new prior, independent of the
input sample

upper vector with upper bounds of parameter for the new prior, independent of the
input sample

best vector with "best" values of parameter for the new prior, independent of the
input sample

scaling optional scaling factor for the covariance. If scaling > 1 will create a prior wider
than the posterior, < 1 a prior more narrow than the posterior. Scaling is linear
to the posterior width, i.e. scaling = 2 will create a prior that with 2x the sd of
the original posterior.

... parameters to pass on to the getSample function
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Details

This function fits a density estimator to a multivariate (typically a posterior) sample. The main
purpose is to summarize a posterior sample as a pdf, in order to include it as a prior in a new
analysis, for example when new data becomes available, or to calculate a fractional Bayes factor
(see marginalLikelihood).

The limitation of this function is that we currently only implement a multivariate normal density
estimator, so you will have a loss of information if your posterior is not approximately multivariate
normal, which is likely the case if you have weak data. Extending the function to include more
flexible density estimators (e.g. gaussian processes) is on our todo list, but it’s quite tricky to get
this stable, so I’m not sure when we will have this working. In general, creating reliable empir-
ical density estimates in high-dimensional parameter spaces is extremely tricky, regardless of the
software you are using.

For that reason, it is usually recommended to not update the posterior with this option, but rather:

1. If the full dataset is available, to make a single, or infrequent updates, recompute the entire
model with the full / updated data

2. For frequent updates, consider using SMC instead of MCMC sampling. SMC sampling
doesn’t require an analytical summary of the posterior.

Author(s)

Florian Hartig

See Also

createPrior
createBetaPrior
createTruncatedNormalPrior
createUniformPrior
createBayesianSetup

Examples

# the BT package includes a number of convenience functions to specify
# prior distributions, including createUniformPrior, createTruncatedNormalPrior
# etc. If you want to specify a prior that corresponds to one of these
# distributions, you should use these functions, e.g.:

prior <- createUniformPrior(lower = c(0,0), upper = c(0.4,5))

prior$density(c(2, 3)) # outside of limits -> -Inf
prior$density(c(0.2, 2)) # within limits, -0.6931472

# All default priors include a sampling function, i.e. you can create
# samples from the prior via
prior$sampler()
# [1] 0.2291413 4.5410389
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# if you want to specify a prior that does not have a default function,
# you should use the createPrior function, which expects a density and
# optionally a sampler function:

density = function(par){
d1 = dunif(par[1], -2,6, log =TRUE)
d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
return(d1 + d2)

}

sampler = function(n=1){
d1 = runif(n, -2,6)
d2 = rnorm(n, mean= 2, sd = 3)
return(cbind(d1,d2))

}

prior <- createPrior(density = density, sampler = sampler,
lower = c(-10,-20), upper = c(10,20), best = NULL)

# note that the createPrior supports additional truncation

# To use a prior in an MCMC, include it in a BayesianSetup

set.seed(123)
ll <- function(x) sum(dnorm(x, log = TRUE)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)

settings = list(iterations = 100)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)

# use createPriorDensity to create a new (estimated) prior from MCMC output

newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10, lower = c(-10,-20),
upper = c(10,20), best = NULL, scaling = 0.5)

createProposalGenerator

Factory that creates a proposal generator

Description

Factory that creates a proposal generator

Usage

createProposalGenerator(
covariance,



22 createProposalGenerator

gibbsProbabilities = NULL,
gibbsWeights = NULL,
otherDistribution = NULL,
otherDistributionLocation = NULL,
otherDistributionScaled = F,
message = F,
method = "chol",
scalingFactor = 2.38

)

Arguments

covariance covariance matrix. Can also be vector of the sqrt of diagonal elements –> stan-
dard deviation

gibbsProbabilities

optional probabilities for the number of parameters to vary in a Metropolis
within gibbs style - for 4 parameters, c(1,1,0.5,0) means that at most 3 param-
eters will be varied, and it is double as likely to vary one or two than varying
3

gibbsWeights optional probabilities for parameters to be varied in a Metropolis within gibbs
style - default ist equal weight for all parameters - for 4 parameters, c(1,1,1,100)
would mean that if 2 parameters would be selected, parameter 4 would be 100
times more likely to be picked than the others. If 4 is selected, the remaining
parameters have equal probability.

otherDistribution

optional additinal distribution to be mixed with the default multivariate normal.
The distribution needs to accept a parameter vector (to allow for the option of
making the distribution dependend on the parameter values), but it is still as-
sumed that the change from the current values is returned, not the new absolute
values.

otherDistributionLocation

a vector with 0 and 1, denoting which parameters are modified by the otherDis-
tribution

otherDistributionScaled

should the other distribution be scaled if gibbs updates are calculated?

message print out parameter settings

method method for covariance decomposition

scalingFactor scaling factor for the proposals

Author(s)

Florian Hartig

See Also

updateProposalGenerator
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Examples

testMatrix = matrix(rep(c(0,0,0,0), 1000), ncol = 4)
testVector = c(0,0,0,0)

##Standard multivariate normal proposal generator

testGenerator <- createProposalGenerator(covariance = c(1,1,1,1), message = TRUE)

methods(class = "proposalGenerator")
print(testGenerator)

x = testGenerator$returnProposal(testVector)
x

x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

##Changing the covariance
testGenerator$covariance = diag(rep(100,4))
testGenerator <- testGenerator$updateProposalGenerator(testGenerator, message = TRUE)

testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

##-Changing the gibbs probabilities / probability to modify 1-n parameters

testGenerator$gibbsProbabilities = c(1,1,0,0)
testGenerator <- testGenerator$updateProposalGenerator(testGenerator)

testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

##-Changing the gibbs weights / probability to pick each parameter

testGenerator$gibbsWeights = c(0.3,0.3,0.3,100)
testGenerator <- testGenerator$updateProposalGenerator(testGenerator)

testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)

##-Adding another function

otherFunction <- function(x) sample.int(10,1)

testGenerator <- createProposalGenerator(
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covariance = c(1,1,1),
otherDistribution = otherFunction,
otherDistributionLocation = c(0,0,0,1),
otherDistributionScaled = TRUE

)

testGenerator$returnProposal(testVector)
x <- testGenerator$returnProposalMatrix(testMatrix)
boxplot(x)
table(x[,4])

createSmcSamplerList Convenience function to create an object of class SMCSamplerList
from a list of mcmc samplers

Description

Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers

Usage

createSmcSamplerList(...)

Arguments

... a list of MCMC samplers

Value

a list of class smcSamplerList with each object being an smcSampler

Author(s)

Florian Hartig

createTruncatedNormalPrior

Convenience function to create a truncated normal prior

Description

Convenience function to create a truncated normal prior

Usage

createTruncatedNormalPrior(mean, sd, lower, upper)
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Arguments

mean best estimate for each parameter

sd sdandard deviation

lower vector of lower prior range for all parameters

upper vector of upper prior range for all parameters

Note

for details see createPrior

Author(s)

Florian Hartig

See Also

createPriorDensity
createPrior
createBetaPrior
createUniformPrior
createBayesianSetup

Examples

# the BT package includes a number of convenience functions to specify
# prior distributions, including createUniformPrior, createTruncatedNormalPrior
# etc. If you want to specify a prior that corresponds to one of these
# distributions, you should use these functions, e.g.:

prior <- createUniformPrior(lower = c(0,0), upper = c(0.4,5))

prior$density(c(2, 3)) # outside of limits -> -Inf
prior$density(c(0.2, 2)) # within limits, -0.6931472

# All default priors include a sampling function, i.e. you can create
# samples from the prior via
prior$sampler()
# [1] 0.2291413 4.5410389

# if you want to specify a prior that does not have a default function,
# you should use the createPrior function, which expects a density and
# optionally a sampler function:

density = function(par){
d1 = dunif(par[1], -2,6, log =TRUE)
d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
return(d1 + d2)

}
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sampler = function(n=1){
d1 = runif(n, -2,6)
d2 = rnorm(n, mean= 2, sd = 3)
return(cbind(d1,d2))

}

prior <- createPrior(density = density, sampler = sampler,
lower = c(-10,-20), upper = c(10,20), best = NULL)

# note that the createPrior supports additional truncation

# To use a prior in an MCMC, include it in a BayesianSetup

set.seed(123)
ll <- function(x) sum(dnorm(x, log = TRUE)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)

settings = list(iterations = 100)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)

# use createPriorDensity to create a new (estimated) prior from MCMC output

newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10, lower = c(-10,-20),
upper = c(10,20), best = NULL, scaling = 0.5)

createUniformPrior Convenience function to create a simple uniform prior distribution

Description

Convenience function to create a simple uniform prior distribution

Usage

createUniformPrior(lower, upper, best = NULL)

Arguments

lower vector of lower prior range for all parameters

upper vector of upper prior range for all parameters

best vector with "best" values for all parameters

Note

for details see createPrior
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Author(s)

Florian Hartig

See Also

createPriorDensity, createPrior, createBetaPrior, createTruncatedNormalPrior, createBayesianSetup

Examples

# the BT package includes a number of convenience functions to specify
# prior distributions, including createUniformPrior, createTruncatedNormalPrior
# etc. If you want to specify a prior that corresponds to one of these
# distributions, you should use these functions, e.g.:

prior <- createUniformPrior(lower = c(0,0), upper = c(0.4,5))

prior$density(c(2, 3)) # outside of limits -> -Inf
prior$density(c(0.2, 2)) # within limits, -0.6931472

# All default priors include a sampling function, i.e. you can create
# samples from the prior via
prior$sampler()
# [1] 0.2291413 4.5410389

# if you want to specify a prior that does not have a default function,
# you should use the createPrior function, which expects a density and
# optionally a sampler function:

density = function(par){
d1 = dunif(par[1], -2,6, log =TRUE)
d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
return(d1 + d2)

}

sampler = function(n=1){
d1 = runif(n, -2,6)
d2 = rnorm(n, mean= 2, sd = 3)
return(cbind(d1,d2))

}

prior <- createPrior(density = density, sampler = sampler,
lower = c(-10,-20), upper = c(10,20), best = NULL)

# note that the createPrior supports additional truncation

# To use a prior in an MCMC, include it in a BayesianSetup

set.seed(123)
ll <- function(x) sum(dnorm(x, log = TRUE)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)



28 DE

settings = list(iterations = 100)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)

# use createPriorDensity to create a new (estimated) prior from MCMC output

newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10, lower = c(-10,-20),
upper = c(10,20), best = NULL, scaling = 0.5)

DE Differential-Evolution MCMC

Description

Differential-Evolution MCMC

Usage

DE(
bayesianSetup,
settings = list(startValue = NULL, iterations = 10000, f = -2.38, burnin = 0, thin = 1,
eps = 0, consoleUpdates = 100, blockUpdate = list("none", k = NULL, h = NULL, pSel =
NULL, pGroup = NULL, groupStart = 1000, groupIntervall = 1000), currentChain = 1,
message = TRUE)

)

Arguments

bayesianSetup a BayesianSetup with the posterior density function to be sampled from

settings list with parameter settings

startValue (optional) eiter a matrix with start population, a number to define the number of
chains that are run or a function that samples a starting population.

iterations number of function evaluations.

burnin number of iterations treated as burn-in. These iterations are not recorded in the
chain.

thin thinning parameter. Determines the interval in which values are recorded.

f scaling factor gamma

eps small number to avoid singularity

blockUpdate list determining whether parameters should be updated in blocks. For possible
settings see Details.

message logical determines whether the sampler’s progress should be printed
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Details

For blockUpdate the first element in the list determines the type of blocking. Possible choices are

• "none" (default), no blocking of parameters

• "correlation" blocking based on correlation of parameters. Using h or k (see below)

• "random" random blocking. Using k (see below)

• "user" user defined groups. Using groups (see below)

Further seven parameters can be specified. "k" determnined the number of groups, "h" the strength
of the correlation used to group parameter and "groups" is used for user defined groups. "groups"
is a vector containing the group number for each parameter. E.g. for three parameters with the first
two in one group, "groups" would be c(1,1,2). Further pSel and pGroup can be used to influence
the choice of groups. In the sampling process a number of groups is randomly drawn and updated.
pSel is a vector containing relative probabilities for an update of the respective number of groups.
E.g. for always updating only one group pSel = 1. For updating one or two groups with the same
probability pSel = c(1,1). By default all numbers have the same probability. The same principle
is used in pGroup. Here the user can influence the probability of each group to be updated. By
default all groups have the same probability. Finally "groupStart" defines the starting point of the
groupUpdate and "groupIntervall" the intervall in which the groups are evaluated.

Author(s)

Francesco Minunno and Stefan Paul

References

Braak, Cajo JF Ter. "A Markov Chain Monte Carlo version of the genetic algorithm Differential
Evolution: easy Bayesian computing for real parameter spaces." Statistics and Computing 16.3
(2006): 239-249.

See Also

DEzs

Examples

library(BayesianTools)

ll <- generateTestDensityMultiNormal(sigma = "no correlation")
bayesianSetup <- createBayesianSetup(likelihood = ll,

lower = rep(-10, 3),
upper = rep(10, 3))

settings = list(iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# DE family samplers are population MCMCs that run a number of internal chains
# in parallel. Here examples how to change the internal chains
# note that internal chains can be executedi n parallel
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settings = list(startValue = 4, iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# Modify the start values of the internal chains (note that this is a matrix
# of dim nChain * nPar)
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# In the DE sampler family with Z matrix, the previous chains are written in
# a common matrix, from which proposals are generated. Per default this matrix
# is started with samples from the prior, but we can change this. Often useful
# to improve sampler convergence,
# see https://github.com/florianhartig/BayesianTools/issues/79
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

Z = matrix(rnorm(300), nrow = 100, ncol = 3),
iterations = 200)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

DEzs Differential-Evolution MCMC zs

Description

Differential-Evolution MCMC zs

Usage

DEzs(
bayesianSetup,
settings = list(iterations = 10000, Z = NULL, startValue = NULL, pSnooker = 0.1, burnin
= 0, thin = 1, f = 2.38, eps = 0, parallel = NULL, pGamma1 = 0.1, eps.mult = 0.2,
eps.add = 0, consoleUpdates = 100, zUpdateFrequency = 1, currentChain = 1,

blockUpdate = list("none", k = NULL, h = NULL, pSel = NULL, pGroup = NULL, groupStart
= 1000, groupIntervall = 1000), message = TRUE)

)

Arguments

bayesianSetup a BayesianSetup with the posterior density function to be sampled from

settings list with parameter settings

startValue (optional) eiter a matrix with start population, a number to define the number of
chains that are run or a function that samples a starting population.
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Z starting Z population

iterations iterations to run

pSnooker probability of Snooker update

burnin number of iterations treated as burn-in. These iterations are not recorded in the
chain.

thin thinning parameter. Determines the interval in which values are recorded.

eps small number to avoid singularity

f scaling factor for gamma

parallel logical, determines weather parallel computing should be attempted (see details)

pGamma1 probability determining the frequency with which the scaling is set to 1 (allows
jumps between modes)

eps.mult random term (multiplicative error)

eps.add random term

blockUpdate list determining whether parameters should be updated in blocks. For possible
settings see Details.

message logical determines whether the sampler’s progress should be printed

Details

For parallel computing, the likelihood density in the bayesianSetup needs to be parallelized, i.e.
needs to be able to operate on a matrix of proposals

For blockUpdate the first element in the list determines the type of blocking. Possible choices are

• "none" (default), no blocking of parameters

• "correlation" blocking based on correlation of parameters. Using h or k (see below)

• "random" random blocking. Using k (see below)

• "user" user defined groups. Using groups (see below)

Further seven parameters can be specified. "k" determnined the number of groups, "h" the strength
of the correlation used to group parameter and "groups" is used for user defined groups. "groups"
is a vector containing the group number for each parameter. E.g. for three parameters with the first
two in one group, "groups" would be c(1,1,2). Further pSel and pGroup can be used to influence
the choice of groups. In the sampling process a number of groups is randomly drawn and updated.
pSel is a vector containing relative probabilities for an update of the respective number of groups.
E.g. for always updating only one group pSel = 1. For updating one or two groups with the same
probability pSel = c(1,1). By default all numbers have the same probability. The same principle
is used in pGroup. Here the user can influence the probability of each group to be updated. By
default all groups have the same probability. Finally "groupStart" defines the starting point of the
groupUpdate and "groupIntervall" the intervall in which the groups are evaluated.

Author(s)

Francesco Minunno and Stefan Paul



32 DEzs

References

ter Braak C. J. F., and Vrugt J. A. (2008). Differential Evolution Markov Chain with snooker
updater and fewer chains. Statistics and Computing http://dx.doi.org/10.1007/s11222-008-9104-9

See Also

DE

Examples

library(BayesianTools)

ll <- generateTestDensityMultiNormal(sigma = "no correlation")
bayesianSetup <- createBayesianSetup(likelihood = ll,

lower = rep(-10, 3),
upper = rep(10, 3))

settings = list(iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# DE family samplers are population MCMCs that run a number of internal chains
# in parallel. Here examples how to change the internal chains
# note that internal chains can be executedi n parallel
settings = list(startValue = 4, iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# Modify the start values of the internal chains (note that this is a matrix
# of dim nChain * nPar)
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# In the DE sampler family with Z matrix, the previous chains are written in
# a common matrix, from which proposals are generated. Per default this matrix
# is started with samples from the prior, but we can change this. Often useful
# to improve sampler convergence,
# see https://github.com/florianhartig/BayesianTools/issues/79
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

Z = matrix(rnorm(300), nrow = 100, ncol = 3),
iterations = 200)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)
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DIC Deviance information criterion

Description

Deviance information criterion

Usage

DIC(sampler, ...)

Arguments

sampler An object of class bayesianOutput (mcmcSampler, smcSampler, or mcmcList)

... further arguments passed to getSample

Details

Output: list with the following elements:
DIC : Deviance Information Criterion
IC : Bayesian Predictive Information Criterion
pD : Effective number of parameters (pD = Dbar - Dhat)
pV : Effective number of parameters (pV = var(D)/2)
Dbar : Expected value of the deviance over the posterior
Dhat : Deviance at the mean posterior estimate

Author(s)

Florian Hartig

References

Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P. & van der Linde, A. (2002) Bayesian measures of
model complexity and fit. J. Roy. Stat. Soc. B, 64, 583-639.

Gelman, A.; Hwang, J. & Vehtari, A. (2014) Understanding predictive information criteria for
Bayesian models. Statistics and Computing, Springer US, 24, 997-1016-.

See Also

WAIC, MAP, marginalLikelihood
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DREAM DREAM

Description

DREAM

Usage

DREAM(
bayesianSetup,
settings = list(iterations = 10000, nCR = 3, gamma = NULL, eps = 0, e = 0.05, pCRupdate
= TRUE, updateInterval = 10, burnin = 0, thin = 1, adaptation = 0.2, parallel = NULL,
DEpairs = 2, consoleUpdates = 10, startValue = NULL, currentChain = 1, message =
TRUE)

)

Arguments

bayesianSetup Object of class ’bayesianSetup’ or ’bayesianOuput’.

settings list with parameter values

iterations Number of model evaluations

nCR parameter determining the number of cross-over proposals. If nCR = 1 all pa-
rameters are updated jointly.

updateInterval determining the intervall for the pCR update

gamma Kurtosis parameter Bayesian Inference Scheme

eps Ergodicity term

e Ergodicity term

pCRupdate If T, crossover probabilities will be updated

burnin number of iterations treated as burn-in. These iterations are not recorded in the
chain.

thin thin thinning parameter. Determines the interval in which values are recorded.

adaptation Number or percentage of samples that are used for the adaptation in DREAM
(see Details).

DEpairs Number of pairs used to generate proposal

startValue eiter a matrix containing the start values (see details), an integer to define the
number of chains that are run, a function to sample the start values or NUll, in
which case the values are sampled from the prior.

consoleUpdates Intervall in which the sampling progress is printed to the console

message logical determines whether the sampler’s progress should be printed
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Details

Insted of a bayesianSetup, the function can take the output of a previous run to restart the sam-
pler from the last iteration. Due to the sampler’s internal structure you can only use the output of
DREAM. If you provide a matrix with start values the number of rows determines the number of
chains that are run. The number of coloumns must be equivalent to the number of parameters in
your bayesianSetup.

There are several small differences in the algorithm presented here compared to the original paper
by Vrugt et al. (2009). Mainly the algorithm implemented here does not have an automatic stopping
criterion. Hence, it will always run the number of iterations specified by the user. Also, conver-
gence is not monitored and left to the user. This can easily be done with coda::gelman.diag(chain).
Further the proposed delayed rejectio step in Vrugt et al. (2009) is not implemented here.

During the adaptation phase DREAM is running two mechanisms to enhance the sampler’s effi-
ciency. First the disribution of crossover values is tuned to favor large jumps in the parameter space.
The crossover probabilities determine how many parameters are updated simultaneously. Second
outlier chains are replanced as they can largely deteriorate the sampler’s performance. However,
these steps destroy the detailed balance of the chain. Consequently these parts of the chain should
be discarded when summarizing posterior moments. This can be done automatically during the
sampling process (i.e. burnin > adaptation) or subsequently by the user. We chose to distinguish
between the burnin and adaptation phase to allow the user more flexibility in the sampler’s settings.

Value

mcmc.object containing the following elements: chains, X, pCR

Author(s)

Stefan Paul

References

Vrugt, Jasper A., et al. "Accelerating Markov chain Monte Carlo simulation by differential evolu-
tion with self-adaptive randomized subspace sampling." International Journal of Nonlinear Sciences
and Numerical Simulation 10.3 (2009): 273-290.

See Also

DREAMzs

Examples

library(BayesianTools)

ll <- generateTestDensityMultiNormal(sigma = "no correlation")
bayesianSetup <- createBayesianSetup(likelihood = ll,

lower = rep(-10, 3),
upper = rep(10, 3))
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settings = list(iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# DE family samplers are population MCMCs that run a number of internal chains
# in parallel. Here examples how to change the internal chains
# note that internal chains can be executedi n parallel
settings = list(startValue = 4, iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# Modify the start values of the internal chains (note that this is a matrix
# of dim nChain * nPar)
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# In the DE sampler family with Z matrix, the previous chains are written in
# a common matrix, from which proposals are generated. Per default this matrix
# is started with samples from the prior, but we can change this. Often useful
# to improve sampler convergence,
# see https://github.com/florianhartig/BayesianTools/issues/79
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

Z = matrix(rnorm(300), nrow = 100, ncol = 3),
iterations = 200)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

DREAMzs DREAMzs

Description

DREAMzs

Usage

DREAMzs(
bayesianSetup,
settings = list(iterations = 10000, nCR = 3, gamma = NULL, eps = 0, e = 0.05, pCRupdate
= FALSE, updateInterval = 10, burnin = 0, thin = 1, adaptation = 0.2, parallel =
NULL, Z = NULL, ZupdateFrequency = 10, pSnooker = 0.1, DEpairs = 2, consoleUpdates =
10, startValue = NULL, currentChain = 1, message = FALSE)

)
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Arguments

bayesianSetup Object of class ’bayesianSetup’ or ’bayesianOuput’.

settings list with parameter values

iterations Number of model evaluations

nCR parameter determining the number of cross-over proposals. If nCR = 1 all pa-
rameters are updated jointly.

updateInterval determining the intervall for the pCR (crossover probabilities) update

gamma Kurtosis parameter Bayesian Inference Scheme.

eps Ergodicity term

e Ergodicity term

pCRupdate Update of crossover probabilities

burnin number of iterations treated as burn-in. These iterations are not recorded in the
chain.

thin thin thinning parameter. Determines the interval in which values are recorded.

adaptation Number or percentage of samples that are used for the adaptation in DREAM
(see Details)

DEpairs Number of pairs used to generate proposal
ZupdateFrequency

frequency to update Z matrix

pSnooker probability of snooker update

Z starting matrix for Z

startValue eiter a matrix containing the start values (see details), an integer to define the
number of chains that are run, a function to sample the start values or NUll, in
which case the values are sampled from the prior.

consoleUpdates Intervall in which the sampling progress is printed to the console

message logical determines whether the sampler’s progress should be printed

Details

Insted of a bayesianSetup, the function can take the output of a previous run to restart the sam-
pler from the last iteration. Due to the sampler’s internal structure you can only use the output of
DREAMzs. If you provide a matrix with start values the number of rows detemines the number of
chains that are run. The number of coloumns must be equivalent to the number of parameters in
your bayesianSetup.

There are several small differences in the algorithm presented here compared to the original paper
by Vrugt et al. (2009). Mainly the algorithm implemented here does not have an automatic stopping
criterion. Hence, it will always run the number of iterations specified by the user. Also, conver-
gence is not monitored and left to the user. This can easily be done with coda::gelman.diag(chain).
Further the proposed delayed rejectio step in Vrugt et al. (2009) is not implemented here.

During the adaptation phase DREAM is running two mechanisms to enhance the sampler’s effi-
ciency. First the disribution of crossover values is tuned to favor large jumps in the parameter space.
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The crossover probabilities determine how many parameters are updated simultaneously. Second
outlier chains are replanced as they can largely deteriorate the sampler’s performance. However,
these steps destroy the detailed balance of the chain. Consequently these parts of the chain should
be discarded when summarizing posterior moments. This can be done automatically during the
sampling process (i.e. burnin > adaptation) or subsequently by the user. We chose to distinguish
between the burnin and adaptation phase to allow the user more flexibility in the sampler’s settings.

Value

mcmc.object containing the following elements: chains, X, pCR, Z

Author(s)

Stefan Paul

References

Vrugt, Jasper A., et al. "Accelerating Markov chain Monte Carlo simulation by differential evolu-
tion with self-adaptive randomized subspace sampling." International Journal of Nonlinear Sciences
and Numerical Simulation 10.3 (2009): 273-290.

ter Braak C. J. F., and Vrugt J. A. (2008). Differential Evolution Markov Chain with snooker
updater and fewer chains. Statistics and Computing http://dx.doi.org/10.1007/s11222-008-9104-9

See Also

DREAM

Examples

library(BayesianTools)

ll <- generateTestDensityMultiNormal(sigma = "no correlation")
bayesianSetup <- createBayesianSetup(likelihood = ll,

lower = rep(-10, 3),
upper = rep(10, 3))

settings = list(iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# DE family samplers are population MCMCs that run a number of internal chains
# in parallel. Here examples how to change the internal chains
# note that internal chains can be executedi n parallel
settings = list(startValue = 4, iterations = 200)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# Modify the start values of the internal chains (note that this is a matrix
# of dim nChain * nPar)
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

iterations = 200)
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out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

# In the DE sampler family with Z matrix, the previous chains are written in
# a common matrix, from which proposals are generated. Per default this matrix
# is started with samples from the prior, but we can change this. Often useful
# to improve sampler convergence,
# see https://github.com/florianhartig/BayesianTools/issues/79
settings = list(startValue = matrix(rnorm(12), nrow = 4, ncol = 3),

Z = matrix(rnorm(300), nrow = 100, ncol = 3),
iterations = 200)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
summary(out)

gelmanDiagnostics Gelman Diagnostics

Description

Runs Gelman Diagnotics for an object of class BayesianOutput

Usage

gelmanDiagnostics(sampler, thin = "auto", plot = F, ...)

Arguments

sampler an object of class mcmcSampler or mcmcSamplerList

thin parameter determining the thinning intervall. Either an integer or "auto" (de-
fault) for automatic thinning.

plot should a Gelman plot be generated

... further arguments passed to getSample

Details

The function calls coda::gelman.diag to calculate Gelman-Rubin diagnostics coda::gelman.plot to
produce the plots.

The idea of these diagnostics is to compare withing and between chain variance of several indepen-
dent MCMC runs (Gelman & Rubin, 1992). The ratio of the 2 is called the potential scale reduction
factor (psfr, also called Rhat). If psfr = 1, this suggest that the independent MCMC runs are essen-
tially identical, and which in turn suggests that they have converged. In practice, values < 1.05, or
sometimes < 1.1 for all parameters are considered acceptable.

To obtain reliable Gelman-Rubin diagnostics, the independent MCMCs should be started at differ-
ent points of the parameter space, ideally overdispersed.
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The diagnostics also calculate a multivariate version of the psrf (mpsrf, Brooks & Gelman 1998). In
practice, values < 1.1 or < 1.2 are often considered acceptable. While useful as an overview, mpsrf <
1.1 does not necessarily mean that all individual psrf < 1.05, and thus I would in doubt recommend
looking at the individual psrf and decide on a case-by-case basis if a lack of convergence for a
particular parameter is a concern.

Also, note that convergence is a continuum, and different aspects of a posterior estimation converge
with different speed. The rules about 1.05 were obtained by looking at the error of the posterior
median / mean. If the goal for the inference is a posterior quantity that is more unstable than the
mean, for example tail probabilities or the DIC, one should try to obtain large posterior samples
with smaller psrf values.

Note on the use of Gelman diagnostics for population MCMCs, in particular the DE sampler
family: the Gelman diagnostics were originally designed for being applied to the outcome of several
independent MCMC runs. Technically and practically, it can also be applied to a single population
MCMC run that has several internal chains, such as DE, DEzs, DREAM, DREAMzs or T-Walk. As
argued in ter Braak et al. (2008), the internal chains should be independent after burn-in. While this
is likely correct, it also means that they are not completely independent before, and we observed this
behavior in the use of the algorithms (i.e. that internal DEzs chains are more similar to each other
than the chains of independent DEzs algorithms), see for example BT issue 226. A concern is that
this non-independence could lead to a failure to detect that the sampler hasn’t converged yet, due to
a wrong burn-in. We would therefore recommend to run several DEzs and check convergence with
those, instead of running only one.

Author(s)

Florian Hartig

References

Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences,
Statistical Science, 7, 457-511.

Brooks, SP. and Gelman, A. (1998) General methods for monitoring convergence of iterative simu-
lations. Journal of Computational and Graphical Statistics, 7, 434-455.

ter Braak, Cajo JF, and Jasper A. Vrugt. "Differential evolution Markov chain with snooker updater
and fewer chains." Statistics and Computing 18.4 (2008): 435-446.

generateParallelExecuter

Factory to generate a parallel executor of an existing function

Description

Factory to generate a parallel executor of an existing function

https://github.com/florianhartig/BayesianTools/issues/226
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Usage

generateParallelExecuter(
fun,
parallel = F,
parallelOptions = list(variables = "all", packages = "all", dlls = NULL)

)

Arguments

fun function to be changed to parallel execution

parallel should a parallel R cluster be used or not. If set to T, cores will be detected
automatically and n-1 of the available n cores of the machine will be used. Al-
ternatively, you can set the number of cores used by hand

parallelOptions

list containing three lists. First "packages" determines the R packages necessary
to run the likelihood function. Second "variables" the objects in the global envi-
ronment needed to run the likelihood function and third "dlls" the DLLs needed
to run the likelihood function (see Details).

Details

For parallelization, option T means that an automatic parallelization via R is attempted, or "exter-
nal", in which case it is assumed that the likelihood is already parallelized. In this case it needs
to accept a matrix with parameters as columns. Further you can specify the packages, objects and
DLLs that are exported to the cluster. By default a copy of your workspace is exported. However,
depending on your workspace this can be very inefficient.

Alternatively you can specify the environments and packages in the likelihood function (e.g. BayesianTools::VSEM()
instead of VSEM()).

Note

Can also be used to make functions compatible with library sensitivity

Author(s)

Florian Hartig

Examples

testDensityMultiNormal <- generateTestDensityMultiNormal()

parDen <- generateParallelExecuter(testDensityMultiNormal)$parallelFun
x = matrix(runif(9,0,1), nrow = 3)
parDen(x)
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generateTestDensityMultiNormal

Multivariate normal likelihood

Description

Generates a 3 dimensional multivariate normal likelihood function.

Usage

generateTestDensityMultiNormal(
mean = c(0, 0, 0),
sigma = "strongcorrelation",
sample = F,
n = 1,
throwErrors = -1

)

Arguments

mean vector with the three mean values of the distribution

sigma either a correlation matrix, or "strongcorrelation", or "no correlation"

sample should the function create samples

n number of samples to create

throwErrors parameter for test purpose. Between 0 and 1 for proportion of errors

Details

3-d multivariate normal density function with mean 2,4,0 and either strong correlation (default), or
no correlation.

Author(s)

Florian Hartig

See Also

testDensityBanana
testLinearModel

Examples

# sampling from the test function
x = generateTestDensityMultiNormal(sample = TRUE, n = 1000)(1000)
correlationPlot(x)
marginalPlot(x)
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# generating the the density
density = generateTestDensityMultiNormal(sample = FALSE)
density(x[1,])

getCredibleIntervals Calculate confidence region from an MCMC or similar sample

Description

Calculate confidence region from an MCMC or similar sample

Usage

getCredibleIntervals(sampleMatrix, quantiles = c(0.025, 0.975))

Arguments

sampleMatrix matrix of outcomes. Could be parameters or predictions

quantiles quantiles to be calculated

Author(s)

Florian Hartig

See Also

getPredictiveDistribution
getPredictiveIntervals

getDharmaResiduals Creates a DHARMa object

Description

Creates a DHARMa object

Usage

getDharmaResiduals(model, parMatrix, numSamples, observed, error, plot = TRUE)
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Arguments

model function that calculates model predictions for a given parameter vector

parMatrix a parameter matrix from which the simulations will be generated

numSamples the number of samples

observed a vector of observed values

error function with signature f(mean, par) that generates error expectations from mean
model predictions. Par is a vector from the matrix with the parameter samples
(full length). f needs to know which of these parameters are parameters of the
error function

plot logical, determining whether the simulated residuals should be plotted

Author(s)

Tankred Ott

getPanels getPanels

Description

Calculates the argument x for par(mfrow = x) for a desired number of panels

Usage

getPanels(x)

Arguments

x the desired number of panels

Author(s)

Florian Hartig
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getPossibleSamplerTypes

Returns possible sampler types

Description

Returns possible sampler types

Usage

getPossibleSamplerTypes()

Author(s)

Florian Hartig

getPredictiveDistribution

Calculates predictive distribution based on the parameters

Description

Calculates predictive distribution based on the parameters

Usage

getPredictiveDistribution(parMatrix, model, numSamples = 1000)

Arguments

parMatrix matrix of parameter values
model model / function to calculate predictions. Outcome should be a vector
numSamples number of samples to be drawn

Details

If numSamples is greater than the number of rows in parMatrix, or NULL, or FALSE, or less than
1 all samples in parMatrix will be used.

Author(s)

Florian Hartig

See Also

getPredictiveIntervals
getCredibleIntervals
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getPredictiveIntervals

Calculates Bayesian credible (confidence) and predictive intervals
based on parameter sample

Description

Calculates Bayesian credible (confidence) and predictive intervals based on parameter sample

Usage

getPredictiveIntervals(
parMatrix,
model,
numSamples = 1000,
quantiles = c(0.025, 0.975),
error = NULL

)

Arguments

parMatrix matrix of parameter values

model model / function to calculate predictions. Outcome should be a vector

numSamples number of samples to be drawn

quantiles quantiles to calculate

error function with signature f(mean, par) that generates error expectations from mean
model predictions. Par is a vector from the matrix with the parameter samples
(full length). f needs to know which of these parameters are parameters of the
error function. If supplied, will calculate also predictive intervals additional to
credible intervals

Details

If numSamples is greater than the number of rows in parMatrix, or NULL, or FALSE, or less than
1 all samples in parMatrix will be used.

Author(s)

Florian Hartig

See Also

getPredictiveDistribution
getCredibleIntervals
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getSample Extracts the sample from a bayesianOutput

Description

Extracts the sample from a bayesianOutput

Usage

getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = 1,
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = FALSE,
...

)

## S3 method for class 'matrix'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
...

)

## S3 method for class 'double'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
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...
)

## S3 method for class 'integer'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
...

)

## S3 method for class 'data.frame'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
...

)

## S3 method for class 'list'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
...

)

## S3 method for class 'mcmc'
getSample(
sampler,
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parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
...

)

## S3 method for class 'mcmc.list'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
...

)

## S3 method for class 'MCMC'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
whichParameters = NULL,
reportDiagnostics = F,
...

)

## S3 method for class 'MCMC_refClass'
getSample(
sampler,
parametersOnly = T,
coda = F,
start = 1,
end = NULL,
thin = "auto",
numSamples = NULL,
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whichParameters = NULL,
reportDiagnostics = F,
...

)

Arguments

sampler an object of class mcmcSampler, mcmcSamplerList, smcSampler, smcSam-
plerList, mcmc, mcmc.list, double, numeric

parametersOnly for a BT output, if F, likelihood, posterior and prior values are also provided in
the output

coda works only for mcmc classes - provides output as a coda object. Note: if mcm-
cSamplerList contains mcmc samplers such as DE that have several chains, the
internal chains will be collapsed. This may not be the desired behavior for all
applications.

start for mcmc samplers start value in the chain. For SMC samplers, start particle

end for mcmc samplers end value in the chain. For SMC samplers, end particle

thin thinning parameter. Either an integer determining the thinning intervall (default
is 1) or "auto" for automatic thinning.

numSamples sample size (only used if thin = 1). If you want to use numSamples set thin to 1.
whichParameters

possibility to select parameters by index
reportDiagnostics

logical, determines whether settings should be included in the output

... further arguments

Details

If thin is greater than the total number of samples in the sampler object the first and the last element
(of each chain if a sampler with multiples chains is used) are sampled. If numSamples is greater
than the total number of samples all samples are selected. In both cases a warning is displayed.

If thin and numSamples is passed, the function will use the thin argument if it is valid and greater
than 1, else numSamples will be used.

Author(s)

Florian Hartig

Tankred Ott

Examples

ll = function(x) sum(dnorm(x, log = TRUE))

setup = createBayesianSetup(ll, lower = c(-10,-10), upper = c(10,10))

settings = list(nrChains = 2, iterations = 1000)
out <- runMCMC(bayesianSetup = setup, sampler = "DEzs", settings = settings)
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# population MCMCs divide the interations by the number of internal chains,
# so the end of the 3 chains is 1000/3 = 334
sample <- getSample(out, start = 100, end = 334, thin = 10)

# sampling with number of samples instead of thinning and
# returning a coda object
sample <- getSample(out, start = 100, numSamples = 60, coda = TRUE)
plot(sample)

# MCMC with a single chain:
settings_2 <- list(nrChains = 1, iterations = 1000)
out_2 <- runMCMC(setup, sampler = "Metropolis", settings = settings_2)
sample_2 <- getSample(out_2, numSamples = 100)

getVolume Calculate posterior volume

Description

Calculate posterior volume

Usage

getVolume(sampler, prior = F, method = "MVN", ...)

Arguments

sampler an object of superclass bayesianOutput or any other class that has the getSample
function implemented (e.g. Matrix)

prior schould also prior volume be calculated

method method for volume estimation. Currently, the only option is "MVN"

... additional parameters to pass on to the getSample

Details

The idea of this function is to provide an estimate of the "posterior volume", i.e. how "broad" the
posterior is. One potential application is to the overall reduction of parametric uncertainty between
different data types, or between prior and posterior.

Implemented methods for volume estimation:

Option "MVN" - in this option, the volume is calculated as the determinant of the covariance matrix
of the prior / posterior sample.

Author(s)

Florian Hartig
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Examples

bayesianSetup = createBayesianSetup(
likelihood = generateTestDensityMultiNormal(sigma = "no correlation"),
lower = rep(-10, 3), upper = rep(10, 3))

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis",
settings = list(iterations = 2000, message = FALSE))

getVolume(out, prior = TRUE)

bayesianSetup = createBayesianSetup(
likelihood = generateTestDensityMultiNormal(sigma = "strongcorrelation"),
lower = rep(-10, 3), upper = rep(10, 3))

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis",
settings = list(iterations = 2000, message = FALSE))

getVolume(out, prior = TRUE)

GOF Standard GOF metrics Startvalues for sampling with nrChains > 1 :
if you want to provide different start values for the different chains,
provide a list

Description

Standard GOF metrics Startvalues for sampling with nrChains > 1 : if you want to provide different
start values for the different chains, provide a list

Usage

GOF(observed, predicted, plot = F, centered = T)

Arguments

observed observed values

predicted predicted values

plot should a plot be created

centered if T, variables are centered to the mean of the observations, i.e. the intercept is
for the mean value of the observation

Details

The function considers observed ~ predicted and calculates

1. rmse = root mean squared error
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2. mae = mean absolute errorr

3. a linear regression with slope, intercept and coefficient of determination R2

For the linear regression, centered = T means that variables will be centered around the mean value
of the observation. This setting avoids a correlation between slope and intercept (that the intercept
is != 0 as soon as the slope is !=0)

Value

A list with the following entries: rmse = root mean squared error, mae = mean absolute error, slope
= slope of regression, offset = intercept of regression, R2 = R2 of regression

Note

In principle, it is possible to plot observed ~ predicted and predicted ~ observed. However, if we
assume that the error is mainly on the y axis (observations), i.e. that observations scatter around the
true (ideal) value, we should plot observed ~ predicted. See Pineiro et al. (2008). How to evaluate
models: observed vs. predicted or predicted vs. observed?. Ecological Modelling, 216(3-4), 316-
322.

Author(s)

Florian Hartig

Examples

x = runif(500,-1,1)
y = 0.2 + 0.9 *x + rnorm(500, sd = 0.5)

summary(lm(y ~ x))

GOF(x,y)

GOF(x,y, plot = TRUE)

likelihoodAR1 AR1 type likelihood function

Description

AR1 type likelihood function

Usage

likelihoodAR1(predicted, observed, sd, a)
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Arguments

predicted vector of predicted values

observed vector of observed values

sd standard deviation of the iid normal likelihood

a temporal correlation in the AR1 model

Note

The AR1 model considers the process:
y(t) = a y(t-1) + E
e = i.i.d. N(0,sd)
|a| < 1
At the moment, no NAs are allowed in the time series.

Author(s)

Florian Hartig

likelihoodIidNormal Normal / Gaussian Likelihood function

Description

Normal / Gaussian Likelihood function

Usage

likelihoodIidNormal(predicted, observed, sd)

Arguments

predicted vector of predicted values

observed vector of observed values

sd standard deviation of the i.i.d. normal likelihood

Author(s)

Florian Hartig
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MAP calculates the Maxiumum APosteriori value (MAP)

Description

calculates the Maxiumum APosteriori value (MAP)

Usage

MAP(bayesianOutput, ...)

Arguments

bayesianOutput an object of class BayesianOutput (mcmcSampler, smcSampler, or mcmcList)

... optional values to be passed on the the getSample function

Details

Currently, this function simply returns the parameter combination with the highest posterior in the
chain. A more refined option would be to take the MCMC sample and do additional calculations,
e.g. use an optimizer, a kerne delnsity estimator, or some other tool to search / interpolate around
the best value in the chain

Author(s)

Florian Hartig

See Also

WAIC, DIC, marginalLikelihood

marginalLikelihood Calcluated the marginal likelihood from a set of MCMC samples

Description

Calcluated the marginal likelihood from a set of MCMC samples

Usage

marginalLikelihood(sampler, numSamples = 1000, method = "Chib", ...)
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Arguments

sampler an MCMC or SMC sampler or list, or for method "Prior" also a BayesianSetup

numSamples number of samples to use. How this works, and if it requires recalculating the
likelihood, depends on the method

method method to choose. Currently available are "Chib" (default), the harmonic mean
"HM", sampling from the prior "Prior", and bridge sampling "Bridge". See
details

... further arguments passed to getSample

Details

The marginal likelihood is the average likelihood across the prior space. It is used, for example, for
Bayesian model selection and model averaging.

It is defined as

ML =

∫
L(Θ)p(Θ)dΘ

Given that MLs are calculated for each model, you can get posterior weights (for model selection
and/or model averaging) on the model by

P (Mi|D) = MLi ∗ p(Mi)/(
∑
i

MLi ∗ p(Mi))

In BT, we return the log ML, so you will have to exp all values for this formula.

It is well-known that the ML is VERY dependent on the prior, and in particular the choice of the
width of uninformative priors may have major impacts on the relative weights of the models. It
has therefore been suggested to not use the ML for model averaging / selection on uninformative
priors. If you have no informative priors, and option is to split the data into two parts, use one part
to generate informative priors for the model, and the second part for the model selection. See help
for an example.

The marginalLikelihood function currently implements four ways to calculate the marginal likeli-
hood. Be aware that marginal likelihood calculations are notoriously prone to numerical stability
issues. Especially in high-dimensional parameter spaces, there is no guarantee that any of the im-
plemented algorithms will converge reasonably fast. The recommended (and default) method is
the method "Chib" (Chib and Jeliazkov, 2001), which is based on MCMC samples, with a limited
number of additional calculations. Despite being the current recommendation, note there are some
numeric issues with this algorithm that may limit reliability for larger dimensions.

The harmonic mean approximation, is implemented only for comparison. Note that the method is
numerically unrealiable and usually should not be used.

The third method is simply sampling from the prior. While in principle unbiased, it will only
converge for a large number of samples, and is therefore numerically inefficient.

The Bridge method uses bridge sampling as implemented in the R package "bridgesampling". It is
potentially more exact than the Chib method, but might require more computation time. However,
this may be very dependent on the sampler.
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Value

A list with log of the marginal likelihood, as well as other diagnostics depending on the chose
method

Author(s)

Florian Hartig

References

Chib, Siddhartha, and Ivan Jeliazkov. "Marginal likelihood from the Metropolis-Hastings output."
Journal of the American Statistical Association 96.453 (2001): 270-281.

Dormann et al. 2018. Model averaging in ecology: a review of Bayesian, information-theoretic,
and tactical approaches for predictive inference. Ecological Monographs

See Also

WAIC, DIC, MAP

Examples

##############################################################
# Comparison of ML for two regression models

# Creating test data with quadratic relationship
sampleSize = 30
x <- (-(sampleSize-1)/2):((sampleSize-1)/2)
y <- 1 * x + 1*x^2 + rnorm(n=sampleSize,mean=0,sd=10)
# plot(x,y, main="Test Data")

# likelihoods for linear and quadratic model
likelihood1 <- function(param){

pred = param[1] + param[2]*x + param[3] * x^2
singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[4]^2), log = TRUE)
return(sum(singlelikelihoods))

}
likelihood2 <- function(param){

pred = param[1] + param[2]*x
singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[3]^2), log = TRUE)
return(sum(singlelikelihoods))

}

setUp1 <- createBayesianSetup(likelihood1,
lower = c(-5,-5,-5,0.01),
upper = c(5,5,5,30))

setUp2 <- createBayesianSetup(likelihood2,
lower = c(-5,-5,0.01),
upper = c(5,5,30))

out1 <- runMCMC(bayesianSetup = setUp1)
M1 = marginalLikelihood(out1, start = 1000)
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out2 <- runMCMC(bayesianSetup = setUp2)
M2 = marginalLikelihood(out2, start = 1000)

### Calculating Bayes factor

exp(M1$ln.ML - M2$ln.ML)

# BF > 1 means the evidence is in favor of M1. See Kass, R. E. & Raftery, A. E.
# (1995) Bayes Factors. J. Am. Stat. Assoc., Amer Statist Assn, 90, 773-795.

### Calculating Posterior weights

exp(M1$ln.ML) / ( exp(M1$ln.ML) + exp(M2$ln.ML))

# If models have different model priors, multiply with the prior probabilities of each model.

## Not run:
#############################################################
# Fractional Bayes factor

# Motivation: ML is very dependent on the prior, which is a problem if you
# have uninformative priors. you can see this via rerunning the upper
# example with changed priors - suddenly, support for M1 is gone

setUp1 <- createBayesianSetup(likelihood1,
lower = c(-500,-500,-500,0.01),
upper = c(500,500,500,3000))

setUp2 <- createBayesianSetup(likelihood2,
lower = c(-500,-500,0.01),
upper = c(500,500,3000))

out1 <- runMCMC(bayesianSetup = setUp1)
M1 = marginalLikelihood(out1, start = 1000)

out2 <- runMCMC(bayesianSetup = setUp2)
M2 = marginalLikelihood(out2, start = 1000)

### Calculating Bayes factor

exp(M1$ln.ML - M2$ln.ML)

# it has therefore been suggested that ML should not be calculated on uninformative priors. But
# what to do if there are no informative priors?
# one option is to calculate the fractional BF, which means that one splites the data in half,
# uses the first half to fit the model, and then use the posterior as a new (now informative)
# prior for the ML - let's do this for the previous case
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# likelihoods with half the data
likelihood1 <- function(param){

pred = param[1] + param[2]*x + param[3] * x^2
singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[4]^2), log = TRUE)
return(sum(singlelikelihoods[seq(1, 30, 2)]))

}
likelihood2 <- function(param){

pred = param[1] + param[2]*x
singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[3]^2), log = TRUE)
return(sum(singlelikelihoods[seq(1, 30, 2)]))

}

setUp1 <- createBayesianSetup(likelihood1,
lower = c(-500,-500,-500,0.01),
upper = c(500,500,500,3000))

setUp2 <- createBayesianSetup(likelihood2,
lower = c(-500,-500,0.01),
upper = c(500,500,3000))

out1 <- runMCMC(bayesianSetup = setUp1)
out2 <- runMCMC(bayesianSetup = setUp2)

newPrior1 = createPriorDensity(out1, start = 200,
lower = c(-500,-500,-500,0.01),
upper = c(500,500,500,3000))

newPrior2 = createPriorDensity(out2, start = 200,
lower = c(-500,-500,0.01),
upper = c(500,500,3000))

# now rerun this with likelihoods for the other half of the data and new prior

likelihood1 <- function(param){
pred = param[1] + param[2]*x + param[3] * x^2
singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[4]^2), log = TRUE)
return(sum(singlelikelihoods[seq(2, 30, 2)]))

}
likelihood2 <- function(param){

pred = param[1] + param[2]*x
singlelikelihoods = dnorm(y, mean = pred, sd = 1/(param[3]^2), log = TRUE)
return(sum(singlelikelihoods[seq(2, 30, 2)]))

}

setUp1 <- createBayesianSetup(likelihood1, prior = newPrior1)
setUp2 <- createBayesianSetup(likelihood2, prior = newPrior2)

out1 <- runMCMC(bayesianSetup = setUp1)
M1 = marginalLikelihood(out1, start = 1000)

out2 <- runMCMC(bayesianSetup = setUp2)
M2 = marginalLikelihood(out2, start = 1000)

### Calculating the fractional Bayes factor
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exp(M1$ln.ML - M2$ln.ML)

## End(Not run)

############################################################
### Performance comparison ###

# Low dimensional case with narrow priors - all methods have low error

# we use a truncated normal for the likelihood to make sure that the density
# integrates to 1 - makes it easier to calcuate the theoretical ML
likelihood <- function(x) sum(msm::dtnorm(x, log = TRUE, lower = -1, upper = 1))
prior = createUniformPrior(lower = rep(-1,2), upper = rep(1,2))
bayesianSetup <- createBayesianSetup(likelihood = likelihood, prior = prior)
out = runMCMC(bayesianSetup = bayesianSetup, settings = list(iterations = 5000))

# plot(out)

# theoretical value
theory = log(1/(2^2))

marginalLikelihood(out)$ln.ML - theory
marginalLikelihood(out, method = "Prior", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "HM", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "Bridge", numSamples = 500)$ln.ML - theory

# higher dimensions - wide prior - HM and Prior don't work

likelihood <- function(x) sum(msm::dtnorm(x, log = TRUE, lower = -10, upper = 10))
prior = createUniformPrior(lower = rep(-10,3), upper = rep(10,3))
bayesianSetup <- createBayesianSetup(likelihood = likelihood, prior = prior)
out = runMCMC(bayesianSetup = bayesianSetup, settings = list(iterations = 5000))

# plot(out)

# theoretical value
theory = log(1/(20^3))

marginalLikelihood(out)$ln.ML - theory
marginalLikelihood(out, method = "Prior", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "HM", numSamples = 500)$ln.ML - theory
marginalLikelihood(out, method = "Bridge", numSamples = 500)$ln.ML - theory

marginalPlot Plot MCMC marginals
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Description

Plot MCMC marginals

Usage

marginalPlot(
x,
prior = NULL,
xrange = NULL,
type = "d",
singlePanel = FALSE,
settings = NULL,
nPriorDraws = 10000,
...

)

Arguments

x bayesianOutput, or matrix or data.frame containing with samples as rows and
parameters as columns

prior if x is a bayesianOutput, T/F will determine if the prior is drawn (default = T). If
x is matrix oder data.frame, a prior can be drawn if a matrix of prior draws with
values as rows and parameters as columns can be provided here.

xrange vector or matrix of plotting ranges for the x axis. If matrix, the rows must be
parameters and the columns min and max values.

type character determining the plot type. Either ’d’ for density plot, or ’v’ for violin
plot

singlePanel logical, determining whether the parameter should be plotted in a single panel
or each in its own panel

settings optional list of additional settings for marginalPlotDensity, and marginalPlotViolin,
respectively

nPriorDraws number of draws from the prior, if x is bayesianOutput

... additional arguments passed to getSample. If you have a high number of draws
from the posterior it is advised to set numSamples (to e.g. 5000) for performance
reasons.

Author(s)

Tankred Ott, Florian Hartig

Examples

## Generate a test likelihood function.
ll <- generateTestDensityMultiNormal(sigma = "no correlation")

## Create a BayesianSetup
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))
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## Finally we can run the sampler and have a look
settings = list(iterations = 1000, adapt = FALSE)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis", settings = settings)

marginalPlot(out, prior = TRUE)

## We can plot the marginals in several ways:
## violin plots
marginalPlot(out, type = 'v', singlePanel = TRUE)
marginalPlot(out, type = 'v', singlePanel = FALSE)
marginalPlot(out, type = 'v', singlePanel = TRUE, prior = TRUE)

## density plot
marginalPlot(out, type = 'd', singlePanel = TRUE)
marginalPlot(out, type = 'd', singlePanel = FALSE)
marginalPlot(out, type = 'd', singlePanel = TRUE, prior = TRUE)

## if you have a very wide prior you can use the xrange option to plot only
## a certain parameter range
marginalPlot(out, type = 'v', singlePanel = TRUE, xrange = matrix(rep(c(-5, 5), 3), ncol = 3))

##Further options
# We can pass arguments to getSample (check ?getSample) and to the density and violin plots
marginalPlot(out, type = 'v', singlePanel = TRUE,

settings = list(col = c('#FC006299','#00BBAA88')), prior = TRUE)
marginalPlot(out, type = 'v', singlePanel = TRUE, numSamples = 500)

mergeChains Merge Chains

Description

Merge a list of outputs from MCMC / SMC samplers

Usage

mergeChains(l, ...)

Arguments

l a list with objects that can be accessed with getSample

... arguments to be passed on to getSample

Details

The function merges a list of outputs from MCMC / SMC samplers into a single matrix. Require-
ment is that the list contains classes for which the getSample function works
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Value

a matrix

Author(s)

Florian Hartig

Metropolis Creates a Metropolis-type MCMC with options for covariance adap-
tatin, delayed rejection, Metropolis-within-Gibbs, and tempering

Description

Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-
within-Gibbs, and tempering

Usage

Metropolis(
bayesianSetup,
settings = list(startValue = NULL, optimize = T, proposalGenerator = NULL,
consoleUpdates = 100, burnin = 0, thin = 1, parallel = NULL, adapt = T,

adaptationInterval = 500, adaptationNotBefore = 3000, DRlevels = 1, proposalScaling =
NULL, adaptationDepth = NULL, temperingFunction = NULL, gibbsProbabilities = NULL,
message = TRUE)

)

Arguments

bayesianSetup either an object of class bayesianSetup created by createBayesianSetup (rec-
ommended), or a log target function

settings a list of settings - possible options follow below

startValue startValue for the MCMC and optimization (if optimize = T). If not provided,
the sampler will attempt to obtain the startValue from the bayesianSetup

optimize logical, determines whether an optimization for start values and proposal func-
tion should be run before starting the sampling

proposalGenerator

optional proposalgenerator object (see createProposalGenerator)
proposalScaling

additional scaling parameter for the proposals that controls the different scales
of the proposals after delayed rejection (typical, after a rejection, one would
want to try a smaller scale). Needs to be as long as DRlevels. Defaults to 0.5^(-
0:(mcmcSampler$settings$DRlevels -1)

burnin number of iterations treated as burn-in. These iterations are not recorded in the
chain.
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thin thinning parameter. Determines the interval in which values are recorded.

consoleUpdates integer, determines the frequency with which sampler progress is printed to the
console

adapt logical, determines wheter an adaptive algorithm should be implemented. De-
fault is TRUE.

adaptationInterval

integer, determines the interval of the adaption if adapt = TRUE.

adaptationNotBefore

integer, determines the start value for the adaption if adapt = TRUE.

DRlevels integer, determines the number of levels for a delayed rejection sampler. Default
is 1, which means no delayed rejection is used.

temperingFunction

function to implement simulated tempering in the algorithm. The function de-
scribes how the acceptance rate will be influenced in the course of the iterations.

gibbsProbabilities

vector that defines the relative probabilities of the number of parameters to be
changes simultaniously.

message logical determines whether the sampler’s progress should be printed

Details

The ’Metropolis’ function is the main function for all Metropolis based samplers in this package.
To call the derivatives from the basic Metropolis-Hastings MCMC, you can either use the corre-
sponding function (e.g. AM for an adaptive Metropolis sampler) or use the parameters to adapt the
basic Metropolis-Hastings. The advantage of the latter case is that you can easily combine different
properties (e.g. adapive sampling and delayed rejection sampling) without changing the function.

Author(s)

Florian Hartig

References

Haario, H., E. Saksman, and J. Tamminen (2001). An adaptive metropolis algorithm. Bernoulli ,
223-242.

Haario, Heikki, et al. "DRAM: efficient adaptive MCMC." Statistics and Computing 16.4 (2006):
339-354.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika 57 (1), 97-109.

Green, Peter J., and Antonietta Mira. "Delayed rejection in reversible jump Metropolis-Hastings."
Biometrika (2001): 1035-1053.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). Equation
of state calculations by fast computing machines. The journal of chemical physics 21 (6), 1087 -
1092.
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Examples

# Running the metropolis via the runMCMC with a proposal covariance generated from the prior
# (can be useful for complicated priors)

ll = function(x) sum(dnorm(x, log = TRUE))
setup = createBayesianSetup(ll, lower = c(-10,-10), upper = c(10,10))

samples = setup$prior$sampler(1000)

generator = createProposalGenerator(diag(1, setup$numPars))
generator = updateProposalGenerator(generator, samples, manualScaleAdjustment = 1, message = TRUE)

settings = list(proposalGenerator = generator, optimize = FALSE, iterations = 500)

out = runMCMC(bayesianSetup = setup, sampler = "Metropolis", settings = settings)

plotDiagnostic Diagnostic Plot

Description

This function plots the DIC, WAIC, mPSRF, PSRF(with upper C.I.) and traces of the parameters in
dependence of iterations. DIC, WAIC are plotted separately for the chains and the trace plots also
for the internal chains.

Usage

plotDiagnostic(
out,
start = 50,
numSamples = 100,
window = 0.2,
plotWAIC = F,
plotPSRF = T,
plotDIC = T,
plotTrace = T,
graphicParameters = NULL,
...

)

Arguments

out object of class "bayesianOutput"

start start value for calculating DIC, WAIC, mPSRF and PSRF, default = 50

numSamples for calculating WAIC, default = 10 because of high computational costs

window plot range to show, vector of percents or only one value as start value for the
window
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plotWAIC whether to calculate WAIC or not, default = T

plotPSRF calculate and plot mPSRF/PSRF or not, default = T

plotDIC calculate and plot DICor not, default = T

plotTrace show trace plots or not, default = T
graphicParameters

graphic parameters as list for plot function

... parameters to give to getSample

Author(s)

Maximilian Pichler

Examples

## Not run:

# Create bayesian setup with
bayesianSetup <- createBayesianSetup(likelihood = testDensityNormal,

prior = createUniformPrior(lower = -10,
upper = 10))

# running MCMC
out = runMCMC(bayesianSetup = bayesianSetup)

# diagnostic plots
plotDiagnostic(out)

## End(Not run)

plotSensitivity Performs a one-factor-at-a-time sensitivity analysis for the posterior
of a given bayesianSetup within the prior range.

Description

Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within
the prior range.

Usage

plotSensitivity(bayesianSetup, selection = NULL, equalScale = T)

Arguments

bayesianSetup An object of class BayesianSetup

selection indices of selected parameters

equalScale if T, y axis of all plots will have the same scale
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Note

This function can also be used for sensitivity analysis of an arbitrary output - just create a BayesianSetup
with this output.

Author(s)

Florian Hartig

Examples

ll <- testDensityBanana
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 2), upper = rep(10, 2))

plotSensitivity(bayesianSetup)

plotTimeSeries Plots a time series, with the option to include confidence and predic-
tion band

Description

Plots a time series, with the option to include confidence and prediction band

Usage

plotTimeSeries(
observed = NULL,
predicted = NULL,
x = NULL,
confidenceBand = NULL,
predictionBand = NULL,
xlab = "Time",
ylab = "Observed / predicted values",
...

)

Arguments

observed observed values

predicted predicted values

x optional values for x axis (time)

confidenceBand matrix with confidenceBand

predictionBand matrix with predictionBand

xlab a title for the x axis

ylab a title for the y axis

... further arguments passed to plot
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Details

Values for confidence and prediction bands can be generated with getPredictiveIntervals. For
a more elaborate version of this plot, see plotTimeSeriesResults

Author(s)

Florian Hartig

See Also

marginalPlot, tracePlot, correlationPlot

Examples

# Create time series
ts <- VSEMcreatePAR(1:100)

# create fake "predictions"
pred <- ts + rnorm(length(ts), mean = 0, sd = 2)

# plot time series
par(mfrow=c(1,2))

plotTimeSeries(observed = ts, main="Observed")
plotTimeSeries(observed = ts, predicted = pred, main = "Observed and predicted")

par(mfrow=c(1,1))

plotTimeSeriesResiduals

Plots residuals of a time series

Description

Plots residuals of a time series

Usage

plotTimeSeriesResiduals(residuals, x = NULL, main = "residuals")

Arguments

residuals x

x optional values for x axis (time)

main title of the plot
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Author(s)

Florian Hartig

plotTimeSeriesResults Creates a time series plot typical for an MCMC / SMC fit

Description

Creates a time series plot typical for an MCMC / SMC fit

Usage

plotTimeSeriesResults(
sampler,
model,
observed,
error = NULL,
plotResiduals = TRUE,
start = 1,
prior = FALSE,
...

)

Arguments

sampler Either a) a matrix b) an MCMC object (list or not), or c) an SMC object

model function that calculates model predictions for a given parameter vector

observed observed values as vector

error function with signature f(mean, par) that generates observations with error (error
= stochasticity according to what is assumed in the likelihood) from mean model
predictions. Par is a vector from the matrix with the parameter samples (full
length). f needs to know which of these parameters are parameters of the error
function. See example in VSEM

plotResiduals logical determining whether residuals should be plotted

start numeric start value for the plot (see getSample)

prior if a prior sampler is implemented, setting this parameter to TRUE will draw
model parameters from the prior instead of the posterior distribution

... further arguments passed to plot

Author(s)

Florian Hartig

See Also

getPredictiveIntervals
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Examples

# Create time series
ts <- VSEMcreatePAR(1:100)

# create fake "predictions"
pred <- ts + rnorm(length(ts), mean = 0, sd = 2)

# plot time series
par(mfrow=c(1,2))

plotTimeSeries(observed = ts, main="Observed")
plotTimeSeries(observed = ts, predicted = pred, main = "Observed and predicted")

par(mfrow=c(1,1))

runMCMC Main wrapper function to start MCMCs, particle MCMCs and SMCs

Description

Main wrapper function to start MCMCs, particle MCMCs and SMCs

Usage

runMCMC(bayesianSetup, sampler = "DEzs", settings = NULL)

Arguments

bayesianSetup either a BayesianSetup (see createBayesianSetup), a function, or a BayesianOut-
put created by runMCMC. The latter allows to continue a previous MCMC run.
See details for how to restart a sampler.

sampler sampling algorithm to be run. Default is DEzs. Options are "Metropolis", "AM",
"DR", "DRAM", "DE", "DEzs", "DREAM", "DREAMzs", "SMC". For details
see the help of the individual functions.

settings list with settings for each sampler. If a setting is not provided, defaults (see
applySettingsDefault) will be used.

Details

The runMCMC function can be started with either one of

1. an object of class BayesianSetup with prior and likelihood function (created with createBayesianSetup).
check if appropriate parallelization options are used - many samplers can make use of paral-
lelization if this option is activated when the class is created.

2. a log posterior or other target function,
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3. an object of class BayesianOutput created by runMCMC. The latter allows to continue a pre-
vious MCMC run.

Settings for the sampler are provides as a list. You can see the default values by running applySettingsDefault
with the respective sampler name. The following settings can be used for all MCMCs:

• startValue (no default) start values for the MCMC. Note that DE family samplers require a
matrix of start values. If startvalues are not provided, they are sampled from the prior.

• iterations (10000) the MCMC iterations

• burnin (0) burnin

• thin (1) thinning while sampling

• consoleUpdates (100) update frequency for console updates

• parallel (NULL) whether parallelization is to be used

• message (TRUE) if progress messages are to be printed

• nrChains (1) the number of independent MCMC chains to be run. Note that this is not control-
ling the internal number of chains in population MCMCs such as DE, so if you run nrChains
= 3 with a DEzs startValue that is a 4xparameter matrix (= 4 internal chains), you will run
independent DEzs runs with 4 internal chains each.

The MCMC samplers will have a number of additional settings, which are described in the Vignette
(run vignette("BayesianTools", package="BayesianTools") and in the help of the samplers. See
Metropolis for Metropolis based samplers, DE and DEzs for standard differential evolution sam-
plers, DREAM and DREAMzs for DREAM sampler, Twalk for the Twalk sampler, and smcSampler
for rejection and Sequential Monte Carlo sampling. Note that the samplers "AM", "DR", and
"DRAM" are special cases of the "Metropolis" sampler and are shortcuts for predefined settings
("AM": adapt=TRUE; "DR": DRlevels=2; "DRAM": adapt=True, DRlevels=2).

Note that even if you specify parallel = T, this will only turn on internal parallelization of the
samplers. The independent samplers controlled by nrChains are not evaluated in parallel, so if
time is an issue it will be better to run the MCMCs individually and then combine them via
createMcmcSamplerList into one joint object.

Note that DE and DREAM variants as well as SMC and T-walk require a population to start, which
should be provided as a matrix. Default (NULL) sets the population size for DE to 3 x dimensions
of parameters, for DREAM to 2 x dimensions of parameters and for DEzs and DREAMzs to three,
sampled from the prior. Note also that the zs variants of DE and DREAM require two populations,
the current population and the z matrix (a kind of memory) - if you want to set both, provide a list
with startvalue$X and startvalue$Z.

setting startValue for sampling with nrChains > 1 : if you want to provide different start values for
the different chains, provide them as a list

Value

The function returns an object of class mcmcSampler (if one chain is run) or mcmcSamplerList.
Both have the superclass bayesianOutput. It is possible to extract the samples as a coda ob-
ject or matrix with getSample. It is also possible to summarize the posterior as a new prior via
createPriorDensity.
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Author(s)

Florian Hartig

See Also

createBayesianSetup

Examples

## Generate a test likelihood function.
ll <- generateTestDensityMultiNormal(sigma = "no correlation")

## Create a BayesianSetup object from the likelihood
## is the recommended way of using the runMCMC() function.
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))

## Finally we can run the sampler and have a look
settings = list(iterations = 1000, adapt = FALSE)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis", settings = settings)

## out is of class bayesianOutput. There are various standard functions
# implemented for this output

plot(out)
correlationPlot(out)
marginalPlot(out)
summary(out)

## additionally, you can return the sample as a coda object, and make use of the coda functions
# for plotting and analysis

codaObject = getSample(out, start = 500, coda = TRUE)

smcSampler SMC sampler

Description

Sequential Monte Carlo Sampler

Usage

smcSampler(
bayesianSetup,
initialParticles = 1000,
iterations = 10,
resampling = T,
resamplingSteps = 2,
proposal = NULL,
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adaptive = T,
proposalScale = 0.5

)

Arguments

bayesianSetup either an object of class bayesianSetup created by createBayesianSetup (rec-
ommended), or a log target function

initialParticles

initial particles - either a draw from the prior, provided as a matrix with the single
parameters as columns and each row being one particle (parameter vector), or a
numeric value with the number of desired particles. In this case, the sampling
option must be provided in the prior of the BayesianSetup.

iterations number of iterations

resampling if new particles should be created at each iteration
resamplingSteps

how many resampling (MCMC) steps between the iterations

proposal optional proposal class

adaptive should the covariance of the proposal be adapted during sampling

proposalScale scaling factor for the proposal generation. Can be adapted if there is too much /
too little rejection

Details

The sampler can be used for rejection sampling as well as for sequential Monte Carlo. For the
former case set the iterations to one.

Note

The SMC currently assumes that the initial particle is sampled from the prior. If a better initial
estimate of the posterior distribution is available, this the sampler should be modified to include
this. Currently, however, this is not included in the code, so the appropriate adjustments have to be
done by hand.

Author(s)

Florian Hartig

Examples

## Example for the use of SMC
# First we need a bayesianSetup - SMC makes most sense if we can for demonstration,
# we'll write a function that puts out the number of model calls

MultiNomialNoCor <- generateTestDensityMultiNormal(sigma = "no correlation")

parallelLL <- function(parMatrix){
print(paste("Calling likelihood with", nrow(parMatrix), "parameter combinations"))
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out = apply(parMatrix, 1, MultiNomialNoCor)
return(out)

}

bayesianSetup <- createBayesianSetup(likelihood = parallelLL, lower = rep(-10, 3),
upper = rep(10, 3), parallel = "external")

# Defining settings for the sampler
# First we use the sampler for rejection sampling
settings <- list(initialParticles = 1000, iterations = 1, resampling = FALSE)

# Running the sampler
out1 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "SMC", settings = settings)
#plot(out1)

# Now for sequential Monte Carlo
settings <- list(initialParticles = 100, iterations = 5, resamplingSteps = 1)
out2 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "SMC", settings = settings)
#plot(out2)

## Not run:

## Example for starting a new SMC run with results from a previous SMC run

# Generate example data (time series)
# x1 and x2 are predictory, yObs is the response
t <- seq(1, 365)
x1 <- (sin( 1 / 160 * 2 * pi * t) + pi) * 5
x2 <- cos( 1 / 182.5 * 1.25 * pi * t) * 12

# the model
mod <- function(par, t1 = 1, tn = 365) {

par[1] * x1[t1:tn] + par[2] * x2[t1:tn]
}

# the true parameters
par1 <- 1.65
par2 <- 0.75
yObs <- mod(c(par1, par2)) + rnorm(length(x1), 0, 2)

# split the time series in half
plot(yObs ~ t)
abline(v = 182, col = "red", lty = 2)

# First half of the data
ll_1 <- function(x, sum = TRUE) {

out <- dnorm(mod(x, 1, 182) - yObs[1:182], 0, 2, log = TRUE)
if (sum == TRUE) sum(out) else out

}

# Fit the first half of the time series
# (e.g. fit the model to the data soon as you collect the data)
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setup_1 <- createBayesianSetup(ll_1, lower = c(-10, -10), upper = c(10, 10))
settings_1 <- list(initialParticles = 1000)
out_1 <- runMCMC(setup_1, "SMC", settings_1)
summary(out_1)

# Second half of the data
ll_2 <- function(x, sum = TRUE) {

out <- dnorm(mod(x, 183, 365) - yObs[183:365], 0, 2, log = TRUE)
if (sum == TRUE) sum(out) else out

}

# Fit the second half of the time series
# (e.g. fit the model to the data soon as you collect the data)
setup_2 <- createBayesianSetup(ll_2, lower = c(-10, -10), upper = c(10, 10))

# This is the important step, we use the final particles from the
# previous SMC run to initialize the new SMC run
settings_2 <- list(initialParticles = out_1$particles)
out_2 <- runMCMC(setup_2, "SMC", settings_2)
summary(out_2)

par_pred <- apply(out_2$particles, 2, median)
pred <- mod(par_pred)
plotTimeSeries(yObs, pred)

## End(Not run)

stopParallel Function to close cluster in BayesianSetup

Description

Function closes the parallel executer (if available)

Usage

stopParallel(bayesianSetup)

Arguments

bayesianSetup object of class BayesianSetup



76 testDensityGelmanMeng

Author(s)

Stefan Paul

testDensityBanana Banana-shaped density function

Description

Banana-shaped density function

Usage

testDensityBanana(p)

Arguments

p 2-dim parameter vector

Note

inspired from package FMEmcmc, seems to go back to Laine M (2008). Adaptive MCMC Methods
with Applications in Environmental and Models. Finnish Meteorological Institute Contributions 69.
ISBN 978-951-697-662-7.

Author(s)

Florian Hartig

See Also

generateTestDensityMultiNormal
testLinearModel

testDensityGelmanMeng GelmanMeng test function

Description

GelmanMeng test function

Usage

testDensityGelmanMeng(x, A = 1, B = 0, C1 = 3, C2 = 3, log = TRUE)
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Arguments

x parameter vector

A function parameter

B function parameter

C1 function parameter

C2 function parameter

log log

A non-elliptical, bivariate density function proposed by Gelman and Meng (1991).

testDensityInfinity Test function infinity ragged

Description

Test function infinity ragged

Usage

testDensityInfinity(x, error = F)

Arguments

x 2-dim parameter vector

error should error or infinity be returned

Author(s)

Florian Hartig

See Also

generateTestDensityMultiNormal
testDensityBanana
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testDensityMultiNormal

3d Mutivariate Normal likelihood

Description

3d Mutivariate Normal likelihood

Usage

testDensityMultiNormal(x, sigma = "strongcorrelation")

Arguments

x a parameter vector of arbitrary length

sigma either a correlation matrix, or "strongcorrelation", or "no correlation"

testDensityNormal Normal likelihood

Description

Normal likelihood

Usage

testDensityNormal(x, sum = T)

Arguments

x a parameter vector of arbitrary length

sum if likelihood should be summed or not

Author(s)

Florian Hartig



testLinearModel 79

testLinearModel Fake model, returns a ax + b linear response to 2-param vector

Description

Fake model, returns a ax + b linear response to 2-param vector

Usage

testLinearModel(x, env = NULL)

Arguments

x 2-dim parameter vector

env optional, environmental covariate

Author(s)

Florian Hartig

See Also

generateTestDensityMultiNormal
testDensityBanana

Examples

x = c(1,2)
y = testLinearModel(x)
plot(y)

tracePlot Trace plot for MCMC class

Description

Trace plot for MCMC class

Usage

tracePlot(sampler, thin = "auto", ...)
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Arguments

sampler an object of class MCMC sampler

thin determines the thinning intervall of the chain

... additional parameters to pass on to the getSample, for example parametersOnly
=F, or start = 1000

See Also

marginalPlot
plotTimeSeries
correlationPlot

Examples

# set up and run the MCMC
ll <- function(x) sum(dnorm(x, log = TRUE))
setup <- createBayesianSetup(likelihood = ll, lower = c(-10, -10), upper = c(10,10))
settings <- list(iterations = 2000)
out <- runMCMC(bayesianSetup = setup, settings = settings, sampler = "Metropolis")

# plot the trace
tracePlot(sampler = out, thin = 10)
tracePlot(sampler = out, thin = 50)

# additional parameters can be passed on to getSample (see help)
tracePlot(sampler = out, thin = 10, start = 500)
# select parameter by index
tracePlot(sampler = out, thin = 10, start = 500, whichParameters = 2)

Twalk T-walk MCMC

Description

T-walk MCMC

Usage

Twalk(
bayesianSetup,
settings = list(iterations = 10000, at = 6, aw = 1.5, pn1 = NULL, Ptrav = 0.4918, Pwalk
= 0.4918, Pblow = 0.0082, burnin = 0, thin = 1, startValue = NULL, consoleUpdates =
100, message = TRUE)

)
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Arguments

bayesianSetup Object of class ’bayesianSetup’ or ’bayesianOuput’.

settings list with parameter values.

iterations Number of model evaluations

at "traverse" move proposal parameter. Default to 6

aw "walk" move proposal parameter. Default to 1.5

pn1 Probability determining the number of parameters that are changed

Ptrav Move probability of "traverse" moves, default to 0.4918

Pwalk Move probability of "walk" moves, default to 0.4918

Pblow Move probability of "traverse" moves, default to 0.0082

burnin number of iterations treated as burn-in. These iterations are not recorded in the
chain.

thin thinning parameter. Determines the interval in which values are recorded.

startValue Matrix with start values

consoleUpdates Intervall in which the sampling progress is printed to the console

message logical determines whether the sampler’s progress should be printed

Details

The probability of "hop" moves is 1 minus the sum of all other probabilities.

Value

Object of class bayesianOutput.

Author(s)

Stefan Paul

References

Christen, J. Andres, and Colin Fox. "A general purpose sampling algorithm for continuous distri-
butions (the t-walk)." Bayesian Analysis 5.2 (2010): 263-281.
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updateProposalGenerator

To update settings of an existing proposal genenerator

Description

To update settings of an existing proposal genenerator

Usage

updateProposalGenerator(
proposal,
chain = NULL,
message = F,
eps = 1e-10,
manualScaleAdjustment = 1

)

Arguments

proposal an object of class proposalGenerator
chain a chain to create the covariance matrix from (optional)
message whether to print an updating message
eps numeric tolerance for covariance
manualScaleAdjustment

optional adjustment for the covariance scale (multiplicative)

Details

The this function can be applied in 2 ways 1) update the covariance given an MCMC chain, and 2)
update the proposal generator after parameters have been changed

VSEM Very simple ecosystem model

Description

A very simple ecosystem model, based on three carbon pools and a basic LUE model

Usage

VSEM(
pars = c(KEXT = 0.5, LAR = 1.5, LUE = 0.002, GAMMA = 0.4, tauV = 1440, tauS = 27370,

tauR = 1440, Av = 0.5, Cv = 3, Cs = 15, Cr = 3),
PAR,
C = TRUE

)
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Arguments

pars a parameter vector with parameters and initial states

PAR Forcing, photosynthetically active radiation (PAR) MJ /m2 /day

C switch to choose whether to use the C or R version of the model. C is much
faster.

Details

This Very Simple Ecosystem Model (VSEM) is a ’toy’ model designed to be very simple but yet
bear some resemblance to deterministic processed based ecosystem models (PBMs) that are com-
monly used in forest modelling.

The model determines the accumulation of carbon in the plant and soil from the growth of the plant
via photosynthesis and senescence to the soil which respires carbon back to the atmosphere.

The model calculates Gross Primary Productivity (GPP) using a very simple light-use efficiency
(LUE) formulation multiplied by light interception. Light interception is calculated via Beer’s law
with a constant light extinction coefficient operating on Leaf Area Index (LAI).

A parameter (GAMMA) determines the fraction of GPP that is autotrophic respiration. The Net
Primary Productivity (NPP) is then allocated to above and below-ground vegetation via a fixed
allocation fraction. Carbon is lost from the plant pools to a single soil pool via fixed turnover rates.
Heterotropic respiration in the soil is determined via a soil turnover rate.

The model equations are

– Photosynthesis

LAI = LAR ∗ Cv

GPP = PAR ∗ LUE ∗ (1− exp(−KEXT∗LAI))

NPP = (1−GAMMA) ∗GPP

– State equations
dCv/dt = Av ∗NPP − Cv/tauV

dCr/dt = (1.0−Av) ∗NPP − Cr/tauR

dCs/dt = Cr/tauR+ Cv/tauV − Cs/tauS

The model time-step is daily.

– VSEM inputs:

PAR Photosynthetically active radiation (PAR) MJ /m2 /day

– VSEM parameters:

KEXT Light extinction coefficient m2 ground area / m2 leaf area

LAR Leaf area ratio m2 leaf area / kg aboveground vegetation

LUE Light-Use Efficiency (kg C MJ-1 PAR)

GAMMA Autotrophic respiration as a fraction of GPP

tauV Longevity of aboveground vegetation days
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tauR Longevity of belowground vegetation days

tauS Residence time of soil organic matter d

– VSEM states:

Cv Above-ground vegetation pool kg C / m2

Cr Below-ground vegetation pool kg C / m2

Cs Carbon in organic matter kg C / m2

– VSEM fluxes:

G Gross Primary Productivity kg C /m2 /day

NPP Net Primary Productivity kg C /m2 /day

NEE Net Ecosystem Exchange kg C /m2 /day

Value

a matrix with colums NEE, CV, CR and CS units and explanations see details

Author(s)

David Cameron, R and C implementation by Florian Hartig

See Also

VSEMgetDefaults, VSEMcreatePAR, , VSEMcreateLikelihood

Examples

## This example shows how to run and calibrate the VSEM model

library(BayesianTools)

# Create input data for the model
PAR <- VSEMcreatePAR(1:1000)
plot(PAR, main = "PAR (driving the model)", xlab = "Day")

# load reference parameter definition (upper, lower prior)
refPars <- VSEMgetDefaults()
# this adds one additional parameter for the likelihood standard deviation (see below)
refPars[12,] <- c(2, 0.1, 4)
rownames(refPars)[12] <- "error-sd"
head(refPars)

# create some simulated test data
# generally recommended to start with simulated data before moving to real data
referenceData <- VSEM(refPars$best[1:11], PAR) # model predictions with reference parameters
referenceData[,1] = 1000 * referenceData[,1]
# this adds the error - needs to conform to the error definition in the likelihood
obs <- referenceData + rnorm(length(referenceData), sd = refPars$best[12])
oldpar <- par(mfrow = c(2,2))
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for (i in 1:4) plotTimeSeries(observed = obs[,i],
predicted = referenceData[,i], main = colnames(referenceData)[i])

# Best to program in a way that we can choose easily which parameters to calibrate
parSel = c(1:6, 12)

# here is the likelihood
likelihood <- function(par, sum = TRUE){

# set parameters that are not calibrated on default values
x = refPars$best
x[parSel] = par
predicted <- VSEM(x[1:11], PAR) # replace here VSEM with your model
predicted[,1] = 1000 * predicted[,1] # this is just rescaling
diff <- c(predicted[,1:4] - obs[,1:4]) # difference betweeno observed and predicted
# univariate normal likelihood. Note that there is a parameter involved here that is fit
llValues <- dnorm(diff, sd = x[12], log = TRUE)
if (sum == FALSE) return(llValues)
else return(sum(llValues))

}

# optional, you can also directly provide lower, upper in the createBayesianSetup, see help
prior <- createUniformPrior(lower = refPars$lower[parSel],

upper = refPars$upper[parSel], best = refPars$best[parSel])

bayesianSetup <- createBayesianSetup(likelihood, prior, names = rownames(refPars)[parSel])

# settings for the sampler, iterations should be increased for real applicatoin
settings <- list(iterations = 2000, nrChains = 2)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

## Not run:

plot(out)
summary(out)
marginalPlot(out)
gelmanDiagnostics(out) # should be below 1.05 for all parameters to demonstrate convergence

# Posterior predictive simulations

# Create a prediction function
createPredictions <- function(par){

# set the parameters that are not calibrated on default values
x = refPars$best
x[parSel] = par
predicted <- VSEM(x[1:11], PAR) # replace here VSEM with your model
return(predicted[,1] * 1000)

}

# Create an error function
createError <- function(mean, par){

return(rnorm(length(mean), mean = mean, sd = par[7]))
}
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# plot prior predictive distribution and prior predictive simulations
plotTimeSeriesResults(sampler = out, model = createPredictions, observed = obs[,1],

error = createError, prior = TRUE, main = "Prior predictive")

# plot posterior predictive distribution and posterior predictive simulations
plotTimeSeriesResults(sampler = out, model = createPredictions, observed = obs[,1],

error = createError, main = "Posterior predictive")

########################################################
# Demonstrating the updating of the prior from old posterior
# Note that it is usually more exact to rerun the MCMC
# with all (old and new) data, instead of updating the prior
# because likely some information is lost when approximating the
# Posterior by a multivariate normal

settings <- list(iterations = 5000, nrChains = 2)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

plot(out)
correlationPlot(out, start = 1000)

newPrior = createPriorDensity(out, method = "multivariate",
eps = 1e-10,
lower = refPars$lower[parSel],
upper = refPars$upper[parSel], start= 1000)

bayesianSetup <- createBayesianSetup(likelihood = likelihood,
prior = newPrior,
names = rownames(refPars)[parSel] )

# check boundaries are correct set
bayesianSetup$prior$sampler() < refPars$lower[parSel]
bayesianSetup$prior$sampler() > refPars$upper[parSel]

# check prior looks similar to posterior
x = bayesianSetup$prior$sampler(2000)
correlationPlot(x, thin = F)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

plot(out)
correlationPlot(out)

plotTimeSeriesResults(sampler = out,
model = createPredictions,
observed = obs[,1],
error = createError,
prior = F, main = "Posterior predictive")

plotTimeSeriesResults(sampler = out,
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model = createPredictions,
observed = obs[,1],
error = createError,
prior = T, main = "Prior predictive")

## End(Not run)

par(oldpar)

vsemC C version of the VSEM model

Description

C version of the VSEM model

Usage

vsemC(par, PAR)

Arguments

par parameter vector

PAR Photosynthetically active radiation (PAR) MJ /m2 /day

VSEMcreateLikelihood Create an example dataset, and from that a likelihood or posterior for
the VSEM model

Description

Create an example dataset, and from that a likelihood or posterior for the VSEM model

Usage

VSEMcreateLikelihood(likelihoodOnly = F, plot = F, selection = c(1:6, 12))

Arguments

likelihoodOnly switch to devide whether to create only a likelihood, or a full bayesianSetup
with uniform priors.

plot switch to decide whether data should be plotted

selection vector containing the indices of the selected parameters
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Details

The purpose of this function is to be able to conveniently create a likelihood for the VSEM model
for demonstration purposes. The function creates example data –> likelihood –> BayesianSetup,
where the latter is the

Author(s)

Florian Hartig

VSEMcreatePAR Create a random radiation (PAR) time series

Description

Create a random radiation (PAR) time series

Usage

VSEMcreatePAR(days = 1:(3 * 365))

Arguments

days days to calculate the PAR for

Author(s)

David Cameron, R implementation by Florian Hartig

VSEMgetDefaults returns the default values for the VSEM

Description

returns the default values for the VSEM

Usage

VSEMgetDefaults()

Value

a data.frame
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WAIC calculates the WAIC

Description

calculates the WAIC

Usage

WAIC(bayesianOutput, numSamples = 1000, ...)

Arguments

bayesianOutput an object of class BayesianOutput. Must implement a log-likelihood density
function that can return point-wise log-likelihood values ("sum" argument).

numSamples the number of samples to calculate the WAIC

... optional values to be passed on the the getSample function

Details

The WAIC is constructed as

WAIC = −2 ∗ (lppd− pWAIC)

The lppd (log pointwise predictive density), defined in Gelman et al., 2013, eq. 4 as

lppd =

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θs)

)

The value of pWAIC can be calculated in two ways, the method used is determined by the method
argument.

Method 1 is defined as,

pWAIC1 = 2

n∑
i=1

(log(
1

S

S∑
s=1

p(yi θ
s))− 1

S

S∑
s=1

log p(yi|θs))

Method 2 is defined as,

pWAIC2 = 2

n∑
i=1

V S
s=1(log p(yi|θs))

where V S
s=1 is the sample variance.

Note

The function requires that the likelihood passed on to BayesianSetup contains the option sum = T/F,
with defaul F. If set to true, the likelihood for each data point must be returned.
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Author(s)

Florian Hartig

References

Gelman, Andrew and Jessica Hwang and Aki Vehtari (2013), "Understanding Predictive Informa-
tion Criteria for Bayesian Models," http://www.stat.columbia.edu/~gelman/research/unpublished/
waic_understand_final.pdf.

Watanabe, S. (2010). "Asymptotic Equivalence of Bayes Cross Validation and Widely Applica-
ble Information Criterion in Singular Learning Theory", Journal of Machine Learning Research,
https://www.jmlr.org/papers/v11/watanabe10a.html.

See Also

DIC, MAP, marginalLikelihood

Examples

bayesianSetup <- createBayesianSetup(likelihood = testDensityNormal,
prior = createUniformPrior(lower = rep(-10,2),

upper = rep(10,2)))

# likelihood density needs to have option sum = FALSE

testDensityNormal(c(1,1,1), sum = FALSE)
bayesianSetup$likelihood$density(c(1,1,1), sum = FALSE)
bayesianSetup$likelihood$density(matrix(rep(1,9), ncol = 3), sum = FALSE)

# running MCMC

out = runMCMC(bayesianSetup = bayesianSetup)

WAIC(out)

http://www.stat.columbia.edu/~gelman/research/unpublished/waic_understand_final.pdf
http://www.stat.columbia.edu/~gelman/research/unpublished/waic_understand_final.pdf
https://www.jmlr.org/papers/v11/watanabe10a.html
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