Package 'BFF'

July 21, 2025

Title Bayes Factor Functions

Version 4.4.2

Author Rachael Shudde [aut, cre], František Bartoš [aut], Saptati Datta [aut], Riana Guha [aut], Sandy Pramanik [aut], Valen Johnson [aut]

Maintainer Rachael Shudde <rachael.shudde@gmail.com>

Description

Bayes factors represent the ratio of probabilities assigned to data by competing scientific hypotheses. However, one drawback of Bayes factors is their dependence on prior specifications that define null and alternative hypotheses. Additionally, there are challenges in their computation. To address these issues, we define Bayes factor functions (BFFs) directly from common test statistics. BFFs express Bayes factors as a function of the prior densities used to define the alternative hypotheses. These prior densities are centered on standardized effects, which serve as indices for the BFF. Therefore, BFFs offer a summary of evidence in favor of alternative hypotheses that correspond to a range of scientifically interesting effect sizes. Such summaries remove the need for arbitrary thresholds to determine ``statistical significance." BFFs are available in closed form and can be easily computed from z, t, chi-squared, and F statistics. They depend on hyperparameters ``r" and ``tau^2", which determine the shape and scale of the prior distributions defining the alternative hypotheses. Plots of BFFs versus effect size provide informative summaries of hypothesis tests that can be easily aggregated across studies.

License GPL (>= 2)

URL https://github.com/rshudde/BFF

BugReports https://github.com/rshudde/BFF/issues

Encoding UTF-8 Imports grDevices, ggplot2, Matrix, gsl, stats, rlang Suggests testthat (>= 3.0.0), knitr, rmarkdown, BSDA, vdiffr RoxygenNote 7.3.1 VignetteBuilder knitr Depends R (>= 2.10) Config/testthat/edition 3 NeedsCompilation no Repository CRAN Date/Publication 2025-05-20 04:40:02 UTC

Contents

BFF.object
chi2_test_BFF
f_test_BFF
is.BFF
nlnm
plot.BFF
posterior_plot
print.BFF
regression_test_BFF 8
summary.BFF
t_test_BFF
z_test_BFF 10
12

Index

BFF.object BFF Object

Description

The BFF object is a class that contains the results of a Bayes Factor Function. The BFF object contains the following fields:

BFF	the object containing the log_bf (log Bayes factor values) and corresponding omega values
input	the object containing the input values
log_bf_h1	maximized Bayes factor in favor of the alternative, or the corresponding Bayes factor if an omega is supplied
omega_h1	corresponding omega value for maximized Bayes factor in favor of the alternative, orthe corresponding omega
log_bf_h0	minimized Bayes factor in favor of the null (for medium or large effect sizes, only returned if a specific ome
omega_h0	corresponding omega value for minimized Bayes factor in favor of the null (for medium or large effect sizes
alternative	alternative hypothesis used in calculations
omega_set	was an omega value provided?

2

chi2_test_BFF

r r value (default is 1 if not provided by user)

test_type type of BFF test

generic_test FALSE

chi2_test_BFF chi2_test_BFF

Description

chi2_test_BFF constructs BFFs based on the t test. BFFs depend on hyperparameters r and tau^2 which determine the shape and scale of the prior distributions which define the alternative hypotheses. By setting r > 1, we use higher-order moments for replicated studies. Fractional moments are set with r > 1 and r not an integer. All results are on the log scale.

Usage

```
chi2_test_BFF(
  chi2_stat,
  n,
  df,
  LRT = FALSE,
  omega = NULL,
  omega_sequence = if (is.null(omega)) seq(0.01, 1, by = 0.01),
  r = 1
)
```

Arguments

chi2_stat	chi-square statistic
n	sample size (if one sample test)
df	degrees of freedom
LRT	should LRT be performed? Default is FALSE
omega	standardized effect size. For the chi ² -test, this is often called Cohen's w (can be a single entry or a vector of values)
omega_sequence	sequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be $seq(0.01, 1, by = 0.01)$
r	variable controlling dispersion of non-local priors. Default is 1. r must be >= 1

Value

Returns an S3 object of class 'BFF' (see 'BFF.object' for details).

Examples

```
chi2BFF = chi2_test_BFF(chi2_stat = 6.5, n = 10, df = 9)
chi2BFF
plot(chi2BFF)
```

f_test_BFF f_test_BFF

Description

f_test_BFF constructs BFFs based on the t test. BFFs depend on hyperparameters r and tau^2 which determine the shape and scale of the prior distributions which define the alternative hypotheses. By setting r > 1, we use higher-order moments for replicated studies. Fractional moments are set with r > 1 and r not an integer. All results are on the log scale.

Usage

```
f_test_BFF(
   f_stat,
   n,
   df1,
   df2,
   omega = NULL,
   omega_sequence = if (is.null(omega)) seq(0.01, 1, by = 0.01),
   r = 1
)
```

Arguments

f_stat	T statistic
n	sample size (if one sample test)
df1	sample size of group one for two sample test.
df2	sample size of group two for two sample test
omega	standardized effect size. For the f-test, this is often called Cohen's f (can be a single entry or a vector of values)
omega_sequence	sequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be $seq(0.01, 1, by = 0.01)$
r	variable controlling dispersion of non-local priors. Default is 1. r must be >= 1

Value

Returns an S3 object of class 'BFF' (see 'BFF.object' for details).

4

is.BFF

Examples

fBFF = f_test_BFF(f_stat = 1.5, n = 50, df1 = 25, df2 = 48)
fBFF
plot(fBFF)

RFF	is RF	
366	is.B	

Check whether x is a BFF object

Description

Check whether x is a BFF object

Usage

is.BFF(x)

Arguments ×

an object to test

Value

returns a boolean.

```
nlnm
```

Non-local Normal Moment Distribution

Description

Non-local Normal Moment Distribution

Usage

dnlnm(x, tau2, r, log = FALSE)

Arguments

Х	vector of quantiles.
tau2	the tau2 parameter
r	the r parameter
log	logical; if TRUE, probabilities p are given as log(p).

Value

dnlnm gives the density of non-local normal moment distribution

plot.BFF

Description

Creates a Bayes factor function plot of an BFF object. The BFF object needs to be specified with omega = NULL or .

Usage

S3 method for class 'BFF'
plot(x, plot = TRUE, ...)

Arguments

х	a BFF object
plot	whether plot should be generated. Default to TRUE. If FALSE a data frame with the support, prior ordinates, and posterior ordinates is returned instead.
	additional arguments to the plotting function. These include:
	"title" tile of the figure
	"xlab" x-axis label of the figure
	"ylab" y-axis label of the figure
	"add_segments" whether effect size segments should be added to the figure. Available only for standardized effect sizes. Defaults to TRUE

Value

either a ggplot2 object if plot = TRUE or a data.frame with a Bayes factor function if plot = FALSE

See Also

[z_test_BFF()], [t_test_BFF()], [chi2_test_BFF()], [f_test_BFF()]

posterior_plot Plot Prior and Posterior Distribution

Description

Creates a prior and posterior plot of an BFF object. If no specific omega was set when fitting the model, the omega resulting in maximum BF against the null hypothesis is selected.

Usage

```
posterior_plot(x, prior = FALSE, plot = TRUE, ...)
```

print.BFF

Arguments

х	a BFF object
prior	whether prior distribution should be added to the figure
plot	whether plot should be generated. Default to TRUE. If FALSE a data frame with the support, prior ordinates, and posterior ordinates is returned instead.
	additional arguments to the plotting function. These include:
	"x_limit" vector defining the plotting range, defaults to c(-3, 3).
	"color" vector with color for the posterior and prior line. Defaults to c("black", "grey")
	" linetype " vector with linetype for the posterior and prior line. Defaults to c(2, 1)
	"linewidth" vector with linewidth for the posterior and prior line. Defaults to c(1, 1)

Value

either a ggplot2 object if plot = TRUE or a data.frame with prior and posterior densities if plot = FALSE

See Also

[z_test_BFF()], [t_test_BFF()], [chi2_test_BFF()], [f_test_BFF()]

print.BFF Summarize BFF object

Description

Summarize BFF object

Usage

```
## S3 method for class 'BFF'
print(x, ...)
```

Arguments

х	a BFF object
	additional arguments (unused)

Value

prints summary of a BFF object.

See Also

 $[z_test_BFF()], [t_test_BFF()], [chi2_test_BFF()], [f_test_BFF()]$

regression_test_BFF regression_test_BFF

Description

regression_test_BFF constructs BFFs based on the t test. BFFs depend on hyperparameters r and tau² which determine the shape and scale of the prior distributions which define the alternative hypotheses. By setting r > 1, we use higher-order moments for replicated studies. Fractional moments are set with r > 1 and r not an integer. All results are on the log scale.

Usage

```
regression_test_BFF(
   t_stat,
   n = NULL,
   k = NULL,
   alternative = "two.sided",
   omega = NULL,
   omega_sequence = if (is.null(omega)) seq(0.01, 1, by = 0.01),
   r = 1
)
```

Arguments

nsample size (if one sample test)knumber of predictorsalternativeis the alternative a one.sided or two.sided test? default is two.sidedomegastandadized effect size. For the regression test, this is also known as Cohen's f^@ (can be a single entry or a vector of values)omega_sequencesequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be seq(0.01, 1, by = 0.01)rvariable controlling dispersion of non-local priors. Default is 1. r must be >= 1	t_stat	T statistic
knumber of predictorsalternativeis the alternative a one.sided or two.sided test? default is two.sidedomegastandadized effect size. For the regression test, this is also known as Cohen's r^@ (can be a single entry or a vector of values)omega_sequencesequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be seq(0.01, 1, by = 0.01)rvariable controlling dispersion of non-local priors. Default is 1. r must be >= 1	n	sample size (if one sample test)
alternativeis the alternative a one.sided or two.sided test? default is two.sidedomegastandadized effect size. For the regression test, this is also known as Cohen's f^@ (can be a single entry or a vector of values)omega_sequencesequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be seq(0.01, 1, by = 0.01)rvariable controlling dispersion of non-local priors. Default is 1. r must be >= 1	k	number of predictors
omegastandadized effect size. For the regression test, this is also known as Cohen's f^@ (can be a single entry or a vector of values)omega_sequencesequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be seq(0.01, 1, by = 0.01)rvariable controlling dispersion of non-local priors. Default is 1. r must be >= 1	alternative	is the alternative a one.sided or two.sided test? default is two.sided
omega_sequencesequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be seq(0.01, 1, by = 0.01)rvariable controlling dispersion of non-local priors. Default is 1. r must be >= 1	omega	standadized effect size. For the regression test, this is also known as Cohen's $f^{@}$ (can be a single entry or a vector of values)
r variable controlling dispersion of non-local priors. Default is 1. r must be >= 1	omega_sequence	sequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be $seq(0.01, 1, by = 0.01)$
	r	variable controlling dispersion of non-local priors. Default is 1. r must be >= 1

Value

Returns an S3 object of class 'BFF' (see 'BFF.object' for details).

Examples

```
regBFF = regression_test_BFF(t_stat = 1.5, n = 50, k = 3)
regBFF
plot(regBFF)
```

summary.BFF Summarize BFF object

Description

Summarize BFF object

Usage

S3 method for class 'BFF'
summary(object, ...)

Arguments

object	a BFF object
	additional arguments (unused)

Value

prints summary of a BFF object.

See Also

[z_test_BFF()], [t_test_BFF()], [chi2_test_BFF()], [f_test_BFF()]

t_test_BFF	t_test_BFF
------------	------------

Description

t_test_BFF constructs BFFs based on the t test. BFFs depend on hyperparameters r and tau^2 which determine the shape and scale of the prior distributions which define the alternative hypotheses. By setting r > 1, we use higher-order moments for replicated studies. Fractional moments are set with r > 1 and r not an integer. All results are on the log scale.

Usage

```
t_test_BFF(
 t_stat,
 n = NULL,
 n1 = NULL,
 n2 = NULL,
 one_sample = FALSE,
 alternative = "two.sided",
 omega = NULL,
 omega_sequence = if (is.null(omega)) seq(0.01, 1, by = 0.01),
 r = 1
)
```

Arguments

t_stat	t statistic
n	sample size (if one sample test)
n1	sample size of group one for two sample test. Must be provided if one_sample = FALSE
n2	sample size of group two for two sample test. Must be provided if one_sample = FALSE
one_sample	is test one sided? Default is FALSE
alternative	the alternative. options are "two.sided" or "less" or "greater"
omega	standardized effect size. For the t-test, this is often called Cohen's d (can be a single entry or a vector of values)
omega_sequence	sequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be $seq(0.01, 1, by = 0.01)$
r	variable controlling dispersion of non-local priors. Default is 1. r must be >= 1

Value

Returns an S3 object of class 'BFF' (see 'BFF.object' for details).

Examples

```
tBFF = t_test_BFF(t_stat = 2.5, n = 50, one_sample = TRUE)
tBFF
plot(tBFF)
```

z_test_BFF z_test_BFF

Description

z_test_BFF constructs BFFs based on the z test. BFFs depend on hyperparameters r and tau^2 which determine the shape and scale of the prior distributions which define the alternative hypotheses. By setting r > 1, we use higher-order moments for replicated studies. Fractional moments are set with r > 1 and r not an integer. All results are on the log scale.

Usage

```
z_test_BFF(
 z_stat,
 n = NULL,
 n1 = NULL,
 n2 = NULL,
 one_sample = FALSE,
 alternative = "two.sided",
 omega = NULL,
```

```
omega_sequence = if (is.null(omega)) seq(0.01, 1, by = 0.01),
r = 1
```

Arguments

)

z_stat	Z statistic
n	sample size (if one sample test)
n1	sample size of group one for two sample test. Must be provided if one_sample = FALSE
n2	sample size of group two for two sample test. Must be provided if one_sample = FALSE
one_sample	is test one sided? Default is FALSE
alternative	the alternative. options are "two.sided" or "less" or "greater"
omega	standardized effect size. For the z-test, this is often called Cohen's d (can be a single entry or a vector of values)
omega_sequence	sequence of standardized effect sizes. If no omega is provided, omega_sequence is set to be $seq(0.01, 1, by = 0.01)$
r	variable controlling dispersion of non-local priors. Default is 1. r must be >= 1

Value

Returns an S3 object of class 'BFF' (see 'BFF.object' for details).

Examples

zBFF = z_test_BFF(z_stat = 2.5, n = 50, one_sample = TRUE)
zBFF
plot(zBFF)

Index

BFF.object, 2 chi2_test_BFF, 3 dnlnm(nlnm), 5 f_test_BFF, 4 is.BFF, 5 nlnm, 5 plot.BFF, 6 posterior_plot, 6 print.BFF, 7 regression_test_BFF, 8 summary.BFF, 9 t_test_BFF, 9 z_test_BFF, 10