Title: | Bootstrap Evaluation of Association Matrices |
Version: | 1.1.0 |
Description: | A bootstrap-based approach to integrate multiple forms of high dimensional genomic data with multiple clinical endpoints. This method is used to find clinically meaningful groups of genomic features, such as genes or pathways. A manuscript describing this method is in preparation. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | dplyr, ggmosaic, ggplot2, ggpubr, logistf, magrittr, MASS, purrr, rlist, stats, stringr, survival, survminer |
Suggests: | rmarkdown |
Depends: | R (≥ 2.10) |
LazyData: | true |
URL: | https://annaseffernick.github.io/BEAMR/, https://github.com/annaSeffernick/BEAMR |
BugReports: | https://github.com/annaSeffernick/BEAMR/issues |
NeedsCompilation: | no |
Packaged: | 2024-07-22 13:49:20 UTC; aseffern |
Author: | Anna Eames Seffernick
|
Maintainer: | Anna Eames Seffernick <anna.seffernick@stjude.org> |
Repository: | CRAN |
Date/Publication: | 2024-07-27 16:00:06 UTC |
Pediatric T-ALL Clinical Data from COG trial AALL0434
Description
The beam.data object used in example beam analyses
Usage
beam_dat
Format
beam_dat
A beam.data object, which is a list with the following elements:
- main.data
A data.frame with clinical/endpoint data.
- mtx.data
A list of the omics data matrices.
- mtx.anns
A list of omic annotation data.frames.
- anns.mtch
A data.frame with information to link mtx.data and mtx.anns.
- set.data
A data.frame with set.id, mtx.id, and row.id to link omic features to sets.
- set.anns
Optional data.frame with set annotation data.
- boot.index
A matrix with bootstrap indices.
Source
NA
Pediatric T-ALL Clinical Data from COG trial AALL0434
Description
The smaller beam.data object used in the example for compute_beam_stats function
Usage
beam_dat_sm
Format
beam_dat_sm
A beam.data object, which is a list with the following elements:
- main.data
A data.frame with clinical/endpoint data.
- mtx.data
A list of the omics data matrices.
- mtx.anns
A list of omic annotation data.frames.
- anns.mtch
A data.frame with information to link mtx.data and mtx.anns.
- set.data
A data.frame with set.id, mtx.id, and row.id to link omic features to sets.
- set.anns
Optional data.frame with set annotation data.
- boot.index
A matrix with bootstrap indices.
Source
NA
Pediatric T-ALL BEAM Analysis Specs Data from COG trial AALL0434
Description
The beam.specs object used in example beam analyses
Usage
beam_specs
Format
beam_specs
A data frame with 6 rows and 3 columns:
- name
Analysis name with omic and endpoint
- mtx
Name of omics matrix used in the analysis
- mdl
Regression model
Source
NA
Pediatric T-ALL BEAM Analysis Specs Data from COG trial AALL0434
Description
The small beam.specs object used in example compute_beam_stats function.
Usage
beam_specs_sm
Format
beam_specs_sm
A data frame with 2 rows and 3 columns:
- name
Analysis name with omic and endpoint
- mtx
Name of omics matrix used in the analysis
- mdl
Regression model
Source
NA
Pediatric T-ALL Clinical Data from COG trial AALL0434
Description
The beam.stats object used in example beam analyses
Usage
beam_stats
Format
beam_stats
A beam.stats object, which contains the following objects
- beam.stats
A list of data.frames of association statistics for each omic-endpoint pair.
- beam.specs
A beam.specs object (data.frame with name, mtx, and mdl.)
- beam.data
The beam.data object.
Source
NA
Pediatric T-ALL Clinical Data from COG trial AALL0434
Description
The small beam.stats object used in example for compute_beam_stats function.
Usage
beam_stats_sm
Format
beam_stats_sm
A beam.stats object, which contains the following objects
- beam.stats
A list of data.frames of association statistics for each omic-endpoint pair.
- beam.specs
A beam.specs object (data.frame with name, mtx, and mdl.)
- beam.data
The beam.data object.
Source
NA
Check that beam.specs satisfies all necessary conditions
Description
Check that beam.specs satisfies all necessary conditions
Usage
check_beam_specs(beam.specs, mtx.names)
Arguments
beam.specs |
A data.frame with column name, mtx, and mdl |
mtx.names |
A vector with the names of the data matrices (beam.data$mtx.data) |
Value
A data.frame of beam.specs if all conditions satisfied, otherwise throws an error
Examples
data(beam_dat)
data(beam_specs)
test_specs <- check_beam_specs(beam_specs, names(beam_dat$mtx.data))
Check that each element of a list is of a required class
Description
Check that each element of a list is of a required class
Usage
check_list_class(list.object, required.class)
Arguments
list.object |
A list used in BEAMR analysis |
required.class |
Class for list elements, e.g. matrix |
Value
Logical TRUE if list is of required class
Examples
data(omicdat)
check_list_class(omicdat, "matrix")
Clean up bootstrap coefficient matrix
Description
Clean up bootstrap coefficient matrix
Usage
clean_Bmtx(B)
Arguments
B |
Matrix of bootstrap coefficients |
Value
Matrix of cleaned bootstrap coefficients
Examples
data(beam_stats)
B.mtx <- beam_stats$beam.stats[[1]]
B.cln <- clean_Bmtx(B.mtx)
Pediatric T-ALL Clinical Data from COG trial AALL0434
Description
A subset of clinical data from pediatric and young adult t-lineage acute lymphoblastic leukmia patients in the Children's Oncology Group trial AALL0434, published in Liu et al., 2017 Nature Genetics
Usage
clinf
Format
clinf
A data frame with 265 rows and 8 columns:
- ID
Subject ID
- MRD29
Minimal residual disease measured at day 29
- RNA.clm
Key to match to RNA matrix
- Lesion.clm
Key to match Lesion matrix
- Lesion.id
Key to match Lesion matrix
- RNA.id
Key to match RNA matrix
- EFS
Event-free survival Surv object
- OS
Overall survival Surv object
Source
https://www.nature.com/articles/ng.3909
Compute bootstrap model coefficients for BEAM
Description
Compute bootstrap model coefficients for BEAM
Usage
compute_beam_stats(beam.data, beam.specs, stdize = TRUE)
Arguments
beam.data |
Result of prep.beam.data |
beam.specs |
A data.frame of strings with columns name, mtx, mdl (string with R model with mtx.row) |
stdize |
Logical whether to standardize (center and scale) predictors or not. Default is TRUE. |
Value
A beam.stats object, which is a list with beam.stats (the association matrices), the beam.specs, and the beam.data
Examples
data(beam_dat_sm)
data(beam_specs_sm)
test.beam.stats <- compute_beam_stats(beam.data=beam_dat_sm,
beam.specs=beam_specs_sm, stdize=TRUE)
Compute feature level p-values from BEAM statistics
Description
Compute feature level p-values from BEAM statistics
Usage
compute_feature_pvalues(beam.stats)
Arguments
beam.stats |
A beam.stats object, which is a list with beam.stats (the association matrices), the beam.specs, and the beam.data |
Value
A list of feature level p-values, with each entry a data frame for a different omics/endpoint associaiton, with columns id, gene, beta, p, q
Examples
data(beam_stats)
test.feat.pvals <- compute_feature_pvalues(beam.stats=beam_stats)
Compute BEAMR p-values for sets
Description
Compute BEAMR p-values for sets
Usage
compute_set_pvalues(
beam.stats,
peel = FALSE,
z = TRUE,
alpha = 0.1,
mess.freq = 25
)
Arguments
beam.stats |
A beam.stats object from compute_beam_stats function |
peel |
Logical indicating whether to peel in p-value calculation |
z |
Logical indicating whether to z-scale each vector of one coefficient estimate across bootstraps before analysis |
alpha |
Maximum depth to peel (reduces computing time); default 0.1. |
mess.freq |
Message frequency; default 25. |
Value
A list with a data.frame of set p-values from BEAMR analysis, a data.frame of summary row p-values, and a data frame of set matching.
Examples
data(beam_stats_sm)
test.pvals <- compute_set_pvalues(beam.stats=beam_stats_sm)
Extend set definition data with genes on the same row separated by commas, semicolons, slashes, etc
Description
Extend set definition data with genes on the same row separated by commas, semicolons, slashes, etc
Usage
extend_set_data(set.data, sep)
Arguments
set.data |
A data frame with set definition data. |
sep |
Punctuation to split on. |
Value
A data frame.
Examples
data(setdat)
extend_set_data(setdat, sep=",")
Extract beam stats for a specific set
Description
Extract beam stats for a specific set
Usage
extract_beam_stats(beam.stats, set.id)
Arguments
beam.stats |
A beam.stats object, which is a list with beam.stats (the association matrices), the beam.specs, and the beam.data |
set.id |
A character of a set id name (an entry in in beam.data$set.data$set.id) |
Value
A matrix with with estimated associations for each endpoint and each omic feature linked to the set
Examples
data(beam_stats)
test.stats <- extract_beam_stats(beam_stats, set.id="ENSG00000099810")
Find the column of mtch.data with the most rows containing an element of ids
Description
Find the column of mtch.data with the most rows containing an element of ids
Usage
find_id_clm(mtch.data, ids)
Arguments
mtch.data |
A data.frame |
ids |
A vector of row ids to match |
Value
A vector of column names with the most matches.
Examples
data(omicann)
data(omicdat)
lsn.data <- omicann[[1]]
mtx.rows <- rownames(omicdat[[1]])
test <- find_id_clm(lsn.data,mtx.rows)
Generate BEAM Plot List
Description
Internal function: generate a list of clinical feature plots.
Usage
gen_beam_plot_list(
beam.result,
beam.specs,
beam.feat.pvals,
number.pairs = 1,
set.id,
feat.id = NULL,
title.size = 10,
pair.order = "both",
endpt.order = NULL
)
Arguments
beam.result |
Result of prep.beam.data |
beam.specs |
A data.frame of strings with columns name, mtx, mdl, plot |
beam.feat.pvals |
List of feature-level p-values from compute_feature_pvalues |
number.pairs |
Numeric; number of features to display in clinical plots, ordered by significance |
set.id |
A character with set name; must be in beam.result$beam.data$set.data$set.id |
feat.id |
Default NULL; a character with feature name; must be in beam.result$beam.data$set.data$row.id |
title.size |
A numeric. Specify the size of individual plot titles. Default is 10. |
pair.order |
One of c("both", "omic", "endpoint"). Default is "both." Specify how to choose feature-endpoint plots to include. If "both", find the best (based on q, p, effect size) feature-omic pair for each type of omic and each endpoint separately. If "omic", within each omic, find the best feature-endpoint pair and then plot this feature with all endpoints. If "endpoint", need to specify endpt.order as the name of chosen endpoint. Then, within each omic, find the feature with best association with the selected endpoint, and plot this feature for all endpoints. |
endpt.order |
Default NULL. If pair.order="endpoint", specify character with endpoint name (from beam.specs$name, after the period). |
Value
A list of plots for the specified set and/or feature.
Examples
data(beam_stats)
test.feat.pvals <- compute_feature_pvalues(beam.stats=beam_stats)
plot.specs <- prep_beam_plot(beam.data=beam_stats$beam.data,
beam.specs=beam_stats$beam.specs)
plot.list <- gen_beam_plot_list(beam.result=beam_stats, beam.specs=plot.specs,
beam.feat.pvals=test.feat.pvals,
number.pairs=1, set.id="ENSG00000099810",
feat.id=NULL, title.size=11,
pair.order="omic", endpt.order=NULL)
For each row of the data.frame main.data, find the index of the matching element in vector ids
Description
For each row of the data.frame main.data, find the index of the matching element in vector ids
Usage
get_id_index(mtch.data, ids, warn = TRUE)
Arguments
mtch.data |
A data.frame to be linked with the ids |
ids |
A vector of ids to be linked in mtch.data |
warn |
A logical value whether to include warnings with results |
Value
A data.frame with matching id index
Examples
data(clinf)
data(omicdat)
mtx.clms <- colnames(omicdat[[1]])
id_index <- get_id_index(clinf,mtx.clms)
Pediatric T-ALL Omics Annotation Data from COG trial AALL0434
Description
A subset of genomic lesion and RNA expression data from pediatric and young adult t-lineage acute lymphoblastic leukmia patients in the Children's Oncology Group trial AALL0434, published in Liu et al., 2017 Nature Genetics. This is the annotation mapping feature id to gene name given by Ensembl ID.
Usage
omicann
Format
omicann
A list with two data frames of omics annotation.
- Lesion
A dataframe with 20 rows and 2 columns with lesion ID and Ensembl ID.
- RNA
A dataframe with 20 rows and 2 columns with featue ID and Ensembl ID.
Source
https://www.nature.com/articles/ng.3909
Pediatric T-ALL Omics Data from COG trial AALL0434
Description
A subset of genomic lesion and RNA expression data from pediatric and young adult t-lineage acute lymphoblastic leukmia patients in the Children's Oncology Group trial AALL0434, published in Liu et al., 2017 Nature Genetics
Usage
omicdat
Format
omicdat
A list with two dataframes of omic data for each subject
- Lesion
A dataframe with 20 rows and 265 columns indicating presence of lesion.
- RNA
A dataframe with 20 rows and 265 columns with expression data.
Source
https://www.nature.com/articles/ng.3909
Plot bootstrap output for BEAM sets
Description
#' plot_beam_boot produces a pairs plot of the beam stats matrices. Default is maximum of 5 plots, ordered by most significant association direction.
Usage
plot_beam_boot(
beam.result,
beam.feat.pvals,
beam.specs = NULL,
set.id,
max.plots = 4,
z = TRUE
)
Arguments
beam.result |
A beam.stats object from compute_beam_stats |
beam.feat.pvals |
A list containing feature-level p-values from compute_feature_pvalues. |
beam.specs |
A data.frame. Default NULL, in which case beam.result$beam.specs is used. Otherwise can input other beam.specs data.frame that must contain name, mtx, mdl, plot columns. |
set.id |
A character specifying the name of a set. Must be in beam.result$beam.data$set.data |
max.plots |
A number specifying the max number of rows in the pairs plot. Default is 4, ordered by feature-level p-value. |
z |
Logical indicating whether to z-scale each vector of one coefficient estimate across bootstraps before plotting. Default is TRUE. |
Value
A pairs plot figure.
Examples
data(beam_stats)
test.pvals <- compute_set_pvalues(beam.stats=beam_stats)
test.feat.pvals <- compute_feature_pvalues(beam.stats=beam_stats)
test.boot.plot <- plot_beam_boot(beam_stats, test.feat.pvals,
set.id="ENSG00000099810")
Plot BEAM Sets
Description
plot_beam_clin produces a matrix of feature level clinical plots for a set. Users can specify which omic/endpoint pairs they want to see as well as the number of features from the set. Default is all omic/endpoint pairs and the top feature (smallest feature-level p-value).
Usage
plot_beam_clin(
beam.result,
beam.specs = NULL,
beam.set.pvals,
beam.feat.pvals,
set.id,
gene.name = NULL,
pair.type = NULL,
number.pairs = 1,
pair.order = "both",
endpt.order = NULL,
n.col = NULL,
n.row = NULL,
title.size = 10
)
Arguments
beam.result |
A beam.stats object from compute_beam_stats |
beam.specs |
A data.frame. Default NULL, in which case beam.result$beam.specs is used. Otherwise can input other beam.specs data.frame that must contain name, mtx, mdl, plot columns. |
beam.set.pvals |
A list containing BEAMR set p-values from compute_set_pvalues. |
beam.feat.pvals |
A list containing feature-level p-values from compute_feature_pvalues. |
set.id |
A character specifying the name of a set. Must be in beam.result$beam.data$set.data |
gene.name |
A character specifying a Gene Name/Symbol for the set. Default is NULL |
pair.type |
A character vector. Default NULL, in which case clinical plots for all omic/endpoint pairs are produced. Otherwise specify pairs from beam.stats$beam.specs$name |
number.pairs |
A numeric. Default 1, in which case only feature with best simple test for each pair is plotted. If >1, show top n simple plots ordered by feature-level p-value |
pair.order |
One of c("both", "omic", "endpoint"). Default is "both." Specify how to choose feature-endpoint plots to include. If "both", find the best (based on q, p, effect size) feature-omic pair for each type of omic and each endpoint separately. If "omic", within each omic, find the best feature-endpoint pair and then plot this feature with all endpoints. If "endpoint", need to specify endpt.order as the name of chosen endpoint. Then, within each omic, find the feature with best association with the selected endpoint, and plot this feature for all endpoints. |
endpt.order |
Default NULL. If pair.order="endpoint", specify character with endpoint name (from beam.specs$name, after the period). |
n.col |
A numeric. Specify the number of columns for the plot layout; default NULL will use the number of omics types. |
n.row |
A numeric. Specify the number of rows for the plot layout; default NULL will automatically define the number of rows after number of columns specified. |
title.size |
A numeric. Specify the size of individual plot titles. Default is 10. |
Value
A figure (ggarrange object)
Examples
data(beam_stats)
test.pvals <- compute_set_pvalues(beam.stats=beam_stats)
test.feat.pvals <- compute_feature_pvalues(beam.stats=beam_stats)
plot.specs <- prep_beam_plot(beam.data=beam_stats$beam.data,
beam.specs=beam_stats$beam.specs)
test.plot <- plot_beam_clin(beam.result=beam_stats, beam.specs=plot.specs,
beam.set.pvals=test.pvals,
beam.feat.pvals=test.feat.pvals,
set.id="ENSG00000099810", gene.name="MTAP",
pair.type=NULL, number.pairs=1, n.col=4,
n.row=NULL, title.size=11,
pair.order="omic", endpt.order=NULL)
Plot BEAM Feature
Description
plot_feat_clin produces a matrix of feature level clinical plots for a specific feature.
Usage
plot_feat_clin(
feat.id,
beam.result,
beam.specs = NULL,
beam.set.pvals,
beam.feat.pvals,
n.row = NULL,
n.col = NULL
)
Arguments
feat.id |
A character specifying the name of a feature. Must be in beam.result$beam.data$set.data |
beam.result |
A beam.stats object from compute_beam_stats |
beam.specs |
A data.frame. Default NULL, in which case beam.result$beam.specs is used. Otherwise can input other beam.specs data.frame that must contain name, mtx, mdl, plot columns. |
beam.set.pvals |
A list containing BEAMR set p-values from compute_set_pvalues. |
beam.feat.pvals |
A list containing feature-level p-values from compute_feature_pvalues. |
n.row |
A numeric. Specify the number of rows for the plot layout; default NULL will automatically define the number of rows after number of columns specified. |
n.col |
A numeric. Specify the number of columns for the plot layout; default NULL will use the number of omics types. |
Value
A figure (ggarrange object)
Examples
data(beam_stats)
test.pvals <- compute_set_pvalues(beam.stats=beam_stats)
test.feat.pvals <- compute_feature_pvalues(beam.stats=beam_stats)
plot.specs <- prep_beam_plot(beam.data=beam_stats$beam.data, beam.specs=beam_stats$beam.specs)
test.plot <- plot_feat_clin(beam.result=beam_stats, beam.specs=plot.specs,
beam.set.pvals=test.pvals, beam.feat.pvals=test.feat.pvals,
feat.id="ENSG00000227443_loss",
n.col=2, n.row=NULL)
Prepare data for BEAM analysis
Description
Prepare data for BEAM analysis
Usage
prep_beam_data(
main.data,
mtx.data,
mtx.anns = NULL,
set.data = NULL,
set.anns = NULL,
n.boot = 1000,
seed = NULL
)
Arguments
main.data |
A data.frame |
mtx.data |
A list, each element is a matrix |
mtx.anns |
A list, each element is a data.frame |
set.data |
A data.frame with columns set.id, mtx.id, row.id |
set.anns |
A data frame with set.id and other columns |
n.boot |
Number of bootstraps |
seed |
Initial seed for random number generation |
Value
A beam.data object, which is a list with main.data, mtx.data, mtx.anns, anns.mtch, set.data, set.anns, and boot.index
Examples
data(clinf)
data(omicdat)
data(omicann)
data(setdat)
test.beam.data <- prep_beam_data(main.data=clinf, mtx.data=omicdat,
mtx.anns=omicann, set.data=setdat,
set.anns=NULL, n.boot=10, seed=123)
Prepare for BEAM plotting
Description
Add a "plot" column to beam.specs, which includes string of plot commands.
Usage
prep_beam_plot(beam.data, beam.specs)
Arguments
beam.data |
Result of prep.beam.data |
beam.specs |
A data.frame of strings with columns name, mtx, mdl (string with R model with mtx.row) |
Value
An updated beam.specs object that includes the column "plot"
Examples
data(clinf)
data(omicdat)
data(omicann)
data(setdat)
test.beam.data <- prep_beam_data(main.data=clinf, mtx.data=omicdat,
mtx.anns=omicann, set.data=setdat,
set.anns=NULL, n.boot=10, seed=123)
specs <- prep_beam_specs(beam.data=test.beam.data, endpts=c("MRD29", "EFS", "OS"),
firth=TRUE)
plot.specs <- prep_beam_plot(beam.data=test.beam.data, beam.specs=specs)
Prepare beam.specs
Description
Prepare the beam.specs data.frame for BEAM model fitting. Specifies the univariate models needed to compute the BEAMR set p-values.
Usage
prep_beam_specs(
beam.data,
endpts,
firth = TRUE,
adjvars = NULL,
endptmdl = NULL
)
Arguments
beam.data |
A beam.data object from prep_beam_data |
endpts |
A vector of endpoint variable names in main.data |
firth |
A logical value. If TRUE (defaul) fit Firth penalized Cox model to account for monotone likelihood in the presence of rare events or predictors. If FALSE fit usual Cox model. |
adjvars |
Default NULL, optional vector of adjustment variable names in main.data |
endptmdl |
Optional model specification data.frame with endpoint name column called "endpt" and model string column called "mdl" |
Value
The beam.specs object, a data.frame specifying the omics-endpoint association models to be fit
Examples
data(clinf)
data(omicdat)
data(omicann)
data(setdat)
test.beam.data <- prep_beam_data(main.data=clinf, mtx.data=omicdat,
mtx.anns=omicann, set.data=setdat,
set.anns=NULL, n.boot=10, seed=123)
#Without adjustment
prep_beam_specs(beam.data=test.beam.data, endpts=c("MRD29", "OS", "EFS"),
firth=TRUE)
# With adjustment
prep_beam_specs(beam.data=test.beam.data, endpts=c("OS", "EFS"),
adjvars=c("MRD29"), firth=TRUE)
Print summary information about a beam.data object
Description
Print summary information about a beam.data object
Usage
## S3 method for class 'beam.data'
print(x, ...)
Arguments
x |
An object of class "beam.data" |
... |
Other arguments passed to or from other methods |
Value
Messages about the beam.data object
Examples
data(beam_dat)
print(beam_dat)
Print summary information about beam.stats object
Description
Print summary information about beam.stats object
Usage
## S3 method for class 'beam.stats'
print(x, ...)
Arguments
x |
An object of class "beam.stats" |
... |
Other arguments passed to or from other methods |
Value
Messages about the beam.data object
Examples
data(beam_stats)
print(beam_stats)
Map of Pediatric Data from COG trial AALL0434
Description
Map between annotation and omic data for a subset of clinical data from pediatric and young adult t-lineage acute lymphoblastic leukmia patients in the Children's Oncology Group trial AALL0434, published in Liu et al., 2017 Nature Genetics
Usage
setdat
Format
setdat
A data frame with 40 rows and 3 columns
- set.id
Ensembl ID that defines gene-feature set
- mtx.id
Name of omic matrix where corresponding feature data can be found
- row.id
Feature name in corresponding omic matrix
Source
https://www.nature.com/articles/ng.3909
Pediatric T-ALL BEAMR Analysis Specs Data from COG trial AALL0434
Description
The beam.specs object used in example beam analyses
Usage
specs
Format
specs
A data frame with 6 rows and 3 columns:
- name
Analysis name with omic and endpoint
- mtx
Name of omics matrix used in the analysis
- mdl
Regression model
Source
NA
Subset beam.stats Result
Description
Filter the beam.stats object from compute_beam_stats with various filtering criteria. Default is to filter to top 50 sets with smallest q-value. At least one filtering criteria must be specified. Can also use intersection or union of multiple criteria.
Usage
subset_beam_result(
beam.result,
beam.set.pvals = NULL,
beam.feat.pvals = NULL,
mtx.rows = NULL,
set.ids = NULL,
endpts = NULL,
omics = NULL,
p.limit = NULL,
q.limit = NULL,
p.feat.limit = NULL,
q.feat.limit = NULL,
intersect = TRUE,
recalc = FALSE
)
Arguments
beam.result |
A beam.stats object from compute_beam_stats |
beam.set.pvals |
A list containing BEAMR set p-values from compute_set_pvalues; required if p.limit or q.limit are specified. |
beam.feat.pvals |
A list containing feature-level p-values from compute_feature_pvalues; required if p.feat.limit or q.feat.limit are specified. |
mtx.rows |
A list of vectors of feature names corresponding to row.id in set.data. List names correspond to mtx.id in set.data. If specified, filter to all sets containing at least one of these features. |
set.ids |
A character vector of set.ids. If specified, filter to these sets. |
endpts |
A character vector of endpoint names. If specified, filter to sets that correspond to these endpoints. |
omics |
A character vector of omics names. If specified, fitler to sets that correspond to these omics. |
p.limit |
A numeric value. If specified, determine mtx.rows that are below this threshold if p<1 or top p sets if p>1. |
q.limit |
A numeric value. If specified, determine mtx.rows that are below this threshold if q <1 or top q sets if q>1. |
p.feat.limit |
A numeric value. If specified, determine mtx.rows that are below this threshold if p.feat<1 or top p.feat sets if p.feat>1 (feature p-values). |
q.feat.limit |
A numeric value. If specified, determine mtx.rows that are below this threshold if q.feat<1 or top q.feat sets if q.feat>1. |
intersect |
A logical value. Default is TRUE. If TRUE, use intersection of all specified criteria. If FALSE use union of all specified criteria. |
recalc |
A logical value. Default is FALSE. If TRUE, recalculate p-values. If FALSE use original set p-values.. |
Value
A list with filtered beam.stats object, updated beam.set.pvals, and filtered beam.feat.pvals.
Examples
data(beam_stats)
test.pvals <- compute_set_pvalues(beam.stats=beam_stats)
test.feat.pvals <- compute_feature_pvalues(beam.stats=beam_stats)
filt.beam.stats <- subset_beam_result(beam_stats, test.pvals, test.feat.pvals,
endpts=c("EFS","OS"), q.limit=10, intersect=TRUE,
recalc=FALSE)