Type: | Package |
Title: | Computation of Actuarial Measures Using Bell G Family |
Version: | 0.1.0 |
Author: | Muhammad Imran [aut, cre], M.H. Tahir [aut], Saima Shakoor [aut] |
Maintainer: | Muhammad Imran <imranshakoor84@yahoo.com> |
Depends: | R (≥ 2.0) |
Imports: | stats |
Description: | It computes two frequently applied actuarial measures, the expected shortfall and the value at risk. Seven well-known classical distributions in connection to the Bell generalized family are used as follows: Bell-exponential distribution, Bell-extended exponential distribution, Bell-Weibull distribution, Bell-extended Weibull distribution, Bell-Lomax distribution, Bell-Burr-12 distribution, and Bell-Burr-X distribution. Related works include: a) Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). "A new useful exponential model with applications to quality control and actuarial data". Computational Intelligence and Neuroscience, 2022. <doi:10.1155/2022/2489998>. b) Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). "Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data". Open Physics, 21(1), 20220242. <doi:10.1515/phys-2022-0242>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
NeedsCompilation: | no |
Packaged: | 2023-05-15 09:12:34 UTC; Amir computers |
Repository: | CRAN |
Date/Publication: | 2023-05-15 19:06:06 UTC |
Computation of Actuarial Measures Using Bell G Family
Description
Evaluates the value at risk (VaR) and expected shortfall (ES) of seven well-known probability distributions in connection with the Bell G family of distributions.
Details
Package: | ActuarialM |
Type: | Package |
Version: | 0.1.0 |
Date: | 2023-05-15 |
License: | GPL-2 |
Maintainers
Muhammad Imran <imranshakoor84@yahoo.com>
Author(s)
Muhammad Imran <imranshakoor84@yahoo.com>, M.H. Tahir <mht@iub.edu.pk> and Saima Shakoor <saimashakoor500@gmail.com>.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022. <doi:10.1155/2022/2489998>.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242. <doi:10.1155/2022/2489998>.
Bell Burr-12 distribution
Description
Computes the value at risk and expected shortfall based on the Bell Burr-12 (BellB12) distribution. The CDF of the Bell G family is as follows:
H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,
where K(x) represents the baseline Burr-12 CDF, it is given by
K\left(x\right)=1-\left[1+\left(\frac{x}{a}\right)^{b}\right]^{-k};\qquad a,b,k>0.
By setting K(x) in the above Equation, yields the CDF of the BellB12 distribution. The following expression can be used to calculate the VaR:
VaR_{p}(X)=a\left(\left[\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-p\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right]^{-1/k}-1\right)^{1/b},
where p \in (0,1)
. The ES can be computed from the following expression:
ES_{p}(X)=\frac{a}{p}\intop_{0}^{p}\left(\left[\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-z\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right]^{-1/k}-1\right)^{1/b}dz.
Usage
vBellB12(p, a, b, k, lambda, log.p = FALSE, lower.tail = TRUE)
eBellB12(p, a, b, k, lambda)
Arguments
p |
A vector of probablities |
lambda |
The strictly positive parameter of the Bell G family ( |
a |
The strictly positive scale parameter of the baseline Burr-12 distribution ( |
b |
The strictly positive shape parameter of the baseline Burr-12 distribution ( |
k |
The strictly positive shape parameter of the baseline Burr-12 distribution ( |
lower.tail |
if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. |
log.p |
if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). |
Details
The functions allow to compute the value at risk and the expected shortfall of the BellB12 distribution.
Value
vBellB12 gives the value at risk. eBellB12 gives the expected shortfall.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.
Zimmer, W. J., Keats, J. B., & Wang, F. K. (1998). The Burr XII distribution in reliability analysis. Journal of quality technology, 30(4), 386-394.
See Also
Examples
p=runif(10,min=0,max=1)
vBellB12(p,1,1,2,1.2)
eBellB12(p,1,1,2,1.2)
Bell Burr-X distribution
Description
Computes the value at risk and expected shortfall based on the Bell Burr-X (BellBX) distribution. The CDF of the Bell G family is as follows:
H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,
where K(x) represents the baseline Burr-X CDF, it is given by
K(x)=\left[1-\exp(-x^{2})\right]^{a};\qquad a>0.
By setting K(x) in the above Equation, yields the CDF of the BellBX distribution. The following expression can be used to calculate the VaR:
VaR_{p}(X)=\left(-\ln\left[1-\left\{ 1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-p\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right\} ^{1/a}\right]\right)^{0.5},
where p \in (0,1)
. The ES can be computed from the following expression:
ES_{p}(X)=\frac{1}{p}\intop_{0}^{p}\left(-\ln\left[1-\left\{ 1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-z\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right\} ^{1/a}\right]\right)^{0.5}dz.
Usage
vBellBX(p, a, lambda, log.p = FALSE, lower.tail = TRUE)
eBellBX(p, a, lambda)
Arguments
p |
A vector of probablities |
lambda |
The strictly positive parameter of the Bell G family ( |
a |
The strictly positive scale parameter of the baseline Burr-X distribution ( |
lower.tail |
if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. |
log.p |
if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). |
Details
The functions allow to compute the value at risk and the expected shortfall of the BellBX distribution.
Value
vBellBX gives the value at risk. eBellBX gives the expected shortfall.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.
Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. John Wiley & Sons.
See Also
Examples
p=runif(10,min=0,max=1)
vBellBX(p,1.2,2)
eBellBX(p,1.2,2)
Bell exponential distribution
Description
Computes the value at risk and expected shortfall based on the Bell exponential (BellE) distribution. The CDF of the Bell G family is as follows:
H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,
where K(x) represents the baseline exponential CDF, it is given by
K(x)=1-\exp(-\alpha x);\qquad\alpha>0.
By setting K(x) in the above Equation, yields the CDF of the BellE distribution. The following expression can be used to calculate the VaR:
VaR_{p}(X)=\frac{-1}{\alpha}\ln\left(\frac{1}{\lambda}\left\{ \ln\left[\ln\left(1-p\left\{ 1-\exp(1-e^{\lambda})\right\} \right)+e^{\lambda}\right]\right\} \right);\qquad p\in(0,1).
The ES can be computed from the following expression:
ES_{p}(X)=\frac{1}{p}\intop_{0}^{p}\left[\frac{-1}{\alpha}\ln\left(\frac{1}{\lambda}\left\{ \ln\left[\ln\left(1-z\left\{ 1-\exp(1-e^{\lambda})\right\} \right)+e^{\lambda}\right]\right\} \right)\right]dz.
Usage
vBellE(p, alpha, lambda, log.p = FALSE, lower.tail = TRUE)
eBellE(p, alpha, lambda)
Arguments
p |
A vector of probablities |
lambda |
The strictly positive parameter of the Bell G family of distributions |
alpha |
The strictly positive scale parameter of the baseline exponential distribution ( |
lower.tail |
if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. |
log.p |
if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). |
Details
The functions allow to compute the value at risk and the expected shortfall of the BellE distribution.
Value
vBellE gives the values at risk. eBellE gives the expected shortfall.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.
Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.
See Also
Examples
p=runif(10,min=0,max=1)
vBellE(p,1,1.2)
eBellE(p,1,1.2)
Bell exponentiated exponential distribution
Description
Computes the value at risk and expected shortfall based on the Bell exponentiated exponential (BellEE) distribution. The CDF of the Bell G family is as follows:
H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,
where K(x) represents the baseline exponentiated exponential CDF, it is given by
K(x)=\left[1-\exp(-\alpha x)\right]^{\beta};\qquad\alpha,\beta>0.
By setting K(x) in the above Equation, yields the CDF of the BellEE distribution. The following expression can be used to calculate the VaR:
VaR_{p}(X)=\frac{-1}{\alpha}\ln\left[1-\left(1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-p\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right)^{1/\beta}\right],
where p \in (0,1)
. The ES can be computed from the following expression:
ES_{p}(X)=\frac{1}{p}\intop_{0}^{p}\left[\frac{-1}{\alpha}\ln\left[1-\left(1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-z\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right)^{1/\beta}\right]\right]dz.
Usage
vBellEE(p, alpha, beta, lambda, log.p = FALSE, lower.tail = TRUE)
eBellEE(p, alpha, beta, lambda)
Arguments
p |
A vector of probablities |
lambda |
The strictly positive parameter of the Bell G family of distributions |
alpha |
The strictly positive scale parameter of the baseline exponentiated exponential distribution ( |
beta |
The strictly positive shape parameter of the baseline exponentiated exponential distribution ( |
lower.tail |
if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. |
log.p |
if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). |
Details
The functions allow to compute the value at risk and the expected shortfall of the BellEE distribution.
Value
vBellEE gives the value at risk. eBellEE gives the expected shortfall.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.
Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.
See Also
Examples
p=runif(10,min=0,max=1)
vBellEE(p,1,1.2,2)
eBellEE(p,1,1.2,2)
Bell exponentiated Weibull distribution
Description
Computes the value at risk and expected shortfall based on the Bell exponentiated Weibull (BellEW) distribution. The CDF of the Bell G family is as follows:
H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,
where K(x) represents the baseline exponentiated Weibull CDF, it is given by
K(x)=\left[1-\exp(-\alpha x^{\beta})\right]^{\theta};\qquad\alpha,\beta,\theta>0.
By setting K(x) in the above Equation, yields the CDF of the BellEW distribution. The following expression can be used to calculate the VaR:
VaR_{p}(X)=\left[\frac{-1}{\alpha}\ln\left(1-\left[1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-p\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right]^{1/\theta}\right)\right]^{1/\beta},
where p \in (0,1)
. The ES can be computed from the following expression:
ES_{p}(X)=\frac{1}{p}\intop_{0}^{p}\left[\frac{-1}{\alpha}\ln\left(1-\left[1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-z\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right]^{1/\theta}\right)\right]^{1/\beta}dz.
Usage
vBellEW(p, alpha, beta, theta,lambda, log.p = FALSE, lower.tail = TRUE)
eBellEW(p, alpha, beta, theta,lambda)
Arguments
p |
A vector of probablities |
lambda |
The strictly positive parameter of the Bell G family of distributions |
alpha |
The strictly positive scale parameter of the baseline exponentiated Weibull distribution ( |
beta |
The strictly positive shape parameter of the baseline exponentiated Weibull distribution ( |
theta |
The strictly positive shape parameter of the baseline exponentiated Weibull distribution ( |
lower.tail |
if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. |
log.p |
if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). |
Details
The functions allow to compute the value at risk and the expected shortfall of the BellEW distribution.
Value
vBellEW gives the value at risk. eBellEW gives the expected shortfall.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2013). The exponentiated Weibull distribution: a survey. Statistical Papers, 54, 839-877.
See Also
Examples
p=runif(10,min=0,max=1)
vBellEW(p,1,1,2,1)
eBellEW(p,1,1,2,1)
Bell Lomax distribution
Description
Computes the value at risk and expected shortfall based on the Bell Lomax (BellL) distribution. The CDF of the Bell G family is as follows:
H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,
where K(x) represents the baseline Lomax CDF, it is given by
K(x)=1-\left[1+\left(\frac{x}{b}\right)\right]^{-q};\qquad b,q>0.
By setting K(x) in the above Equation, yields the CDF of the BellL distribution. The following expression can be used to calculate the VaR:
VaR_{p}(X)=b\left[\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-p\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)^{-1/q}-1\right],
where p \in (0,1)
. The ES can be computed from the following expression:
ES_{p}(X)=\frac{b}{p}\intop_{0}^{p}\left[\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-z\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)^{-1/q}-1\right]dz.
Usage
vBellL(p, b, q, lambda, log.p = FALSE, lower.tail = TRUE)
eBellL(p, b, q, lambda)
Arguments
p |
A vector of probablities |
lambda |
The strictly positive parameter of the Bell G family ( |
b |
The strictly positive scale parameter of the baseline Lomax distribution ( |
q |
The strictly positive shape parameter of the baseline Lomax distribution ( |
lower.tail |
if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. |
log.p |
if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). |
Details
The functions allow to compute the value at risk and the expected shortfall of the BellL distribution.
Value
vBellL gives the values at risk. eBellL gives the expected shortfall.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.
Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. John Wiley & Sons.
See Also
Examples
p=runif(10,min=0,max=1)
vBellL(p,1,1,2)
eBellL(p,1,1,2)
Bell Weibull distribution
Description
Computes the value at risk and expected shortfall based on the Bell Weibull (BellW) distribution. The CDF of the Bell G family is as follows:
H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,
where K(x) represents the baseline Weibull CDF, it is given by
K(x)=1-\exp(-\alpha x^{\beta});\qquad\alpha,\beta>0.
By setting K(x) in the above Equation, yields the CDF of the BellW distribution. The following expression can be used to calculate the VaR:
VaR_{p}(X)=\left[\frac{-1}{\alpha}\ln\left(\frac{1}{\lambda}\left\{ \ln\left[\ln\left(1-p\left\{ 1-\exp(1-e^{\lambda})\right\} \right)+e^{\lambda}\right]\right\} \right)\right]^{1/\beta};\qquad p\in(0,1).
The ES can be computed from the following expression:
ES_{p}(X)=\frac{1}{p}\intop_{0}^{p}\left[\frac{-1}{\alpha}\ln\left(\frac{1}{\lambda}\left\{ \ln\left[\ln\left(1-z\left\{ 1-\exp(1-e^{\lambda})\right\} \right)+e^{\lambda}\right]\right\} \right)\right]^{1/\beta}dz.
Usage
vBellW(p, alpha, beta, lambda, log.p = FALSE, lower.tail = TRUE)
eBellW(p, alpha, beta, lambda)
Arguments
p |
A vector of probablities |
lambda |
The strictly positive parameter of the Bell G family of distributions |
alpha |
The strictly positive scale parameter of the baseline Weibull distribution ( |
beta |
The strictly positive shape parameter of the baseline Weibull distribution ( |
lower.tail |
if FALSE then 1-H(x) are returned and quantiles are computed for 1-p. |
log.p |
if TRUE then log(H(x)) are returned and quantiles are computed for exp(p). |
Details
The functions allow to compute the value at risk and the expected shortfall of the BellW distribution.
Value
vBellW gives the values at risk. eBellW gives the expected shortfall.
Author(s)
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.
References
Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.
Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.
Hallinan Jr, A. J. (1993). A review of the Weibull distribution. Journal of Quality Technology, 25(2), 85-93.
Rinne, H. (2008). The Weibull distribution: a handbook. CRC press.
See Also
Examples
p=runif(10,min=0,max=1)
vBellW(p,1,2,1)
eBellW(p,1,2,1)