Package 'AccelStab'

July 21, 2025

Title Accelerated Stability Kinetic Modelling

Version 2.3.1

Description Estimate the Šesták–Berggren kinetic model (degradation model) from experimental data. A closed-form (analytic) solution to the degradation model is implemented as a non-linear fit, allowing for the extrapolation of the degradation of a drug product - both in time and temperature. Parametric bootstrap, with kinetic parameters drawn from the multivariate t-distribution, and analytical formulae (the delta method) are available options to calculate the confidence and prediction intervals.

The results (modelling, extrapolations and statistical intervals) can be visualised with multiple plots. The examples illustrate the accelerated stability modelling in drugs and vaccines development.

License AGPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Imports dplyr, ggplot2, minpack.lm, stats, scales

Suggests testthat (>= 3.0.0), knitr, rmarkdown, lifecycle

VignetteBuilder knitr

Depends R (>= 4.1.0)

Config/testthat/edition 3

LazyData true

Language en-GB

URL https://github.com/AccelStab/AccelStab

BugReports https://github.com/AccelStab/AccelStab/issues

NeedsCompilation no

Author Bernard G Franq [aut, cph], Ben Wells [ctb], Alex Ball [cre], Daniel Williams [ctb]

Maintainer Alex Ball <alex_keith_ball@hotmail.com>

Repository CRAN

Date/Publication 2025-07-01 09:20:02 UTC

antigenicity

Contents

step1_sample_mvt	• •	•••	·	•	•	•	•	•	. 1	/
step1_plot_T										
step1_plot_pred										
step1_plot_PI									. 1	3
step1_plot_diagnostic									. 1	2
step1_plot_desc					•				. 1	1
step1_plot_CI	• •		•	•	•	•	•		. 1	0
step1_down_rmse										
step1_down_basic										
step1_down										
potency										
excursion										
antigenicity										

Index

antigenicity

Antigenicity Accelerated Stability Data

Description

An example dataset containing antigenicity concentration data at different temperatures over a period of up to 407 days. Two points over 180 days are to be used for validation instead of fitting.

Usage

data(antigenicity)

Format

An object of class "data.frame" with 56 rows and 6 variables

time Number of days in years for which the datapoints are gathered.

Celsius The temperature in celsius.

K The temperature in Kelvin.

conc The concentration at a time.

N.days Number of days for which the datapoints are gathered.

validA Whether the data point is to be used for validation or fitting.

excursion

Description

Predict a temperature excursion for a product.

Usage

```
excursion(
  step1_down_object,
  temp_changes,
  time_changes,
  CI = TRUE,
  PI = TRUE,
  draw = 10000,
  confidence_interval = 0.95,
  intercept = NULL,
  ribbon = TRUE,
  xname = NULL,
  yname = NULL,
  plot_simulations = FALSE
)
```

Arguments

step1_down_object

	The fit object from the step1_down function (required).
temp_changes	A list that represents the order of the temperatures that the product is subjected to. Must be the same length as time_changes.
time_changes	List that represents the times at which the temperature changes, Starts from time zero and must be the same length as temp_changes.
CI	Show confidence intervals.
PI	Show prediction intervals.
draw Number of simulations used to estimate confidence intervals. confidence_interval	
	Confidence level for the confidence and prediction intervals around the predictions (default 0.95).
intercept	Use a forced y-intercept. If null, the fitted value (of c0) will be used.
ribbon	Add shading to confidence and prediction intervals (optional).
xname	Label for the x-axis (optional).
yname	Label for the y-axis (optional).
plot_simulation	S

If TRUE, randomly selects 100 of the simulations to also display on the plot.

Use the output from step1.down to run a temperature excursion prediction.

Value

An SB class object, a list including the following elements:

- *prediction* A data frame containing the predictions with the confidence and prediction intervals.
- simulations Matrix of the simulations.
- excursion plot A plot with predictions and statistical intervals.
- user_parameters List of users input parameters which is utilised by other functions in the package.

Examples

excursion\$excursion_plot

potency

Potency Accelerated Stability Data

Description

An example dataset containing potency data at different temperatures..

Usage

data(potency)

step1_down

Format

An object of class "data.frame" with 78 rows and 3 variables

Time Time for which the datapoints are gathered.

Potency Measured potency at a time.

Celsius The temperature in celsius.

step1_down

Step1 Down Model

Description

Fit the one-step Šesták-Berggren kinetic model.

Usage

```
step1_down(
 data,
 у,
  .time,
 K = NULL,
 C = NULL,
  validation = NULL,
 draw = 10000,
 parms = NULL,
  temp_pred_C = NULL,
 max_time_pred = NULL,
 confidence_interval = 0.95,
 by = 101,
  reparameterisation = FALSE,
 zero_order = FALSE,
  . . .
)
```

Arguments

data	Dataframe containing accelerated stability data (required).
у	Name of decreasing variable (e.g. concentration) contained within data (re- quired).
.time	Time variable contained within data (required).
К	Kelvin variable (numeric or column name) (optional).
С	Celsius variable (numeric or column name) (optional).
validation	Validation dummy variable, the column must contain only 1s and 0s, 1 for vali- dation data and 0 for fit data. (column name) (optional).

draw	Number of simulations used to estimate confidence intervals. When set to NULL the calculus method is used, however this is not recommended.
parms	Starting values for the parameters as a list - k1, k2, k3, and c0.
temp_pred_C	Integer or numeric value to predict the response for a given temperature (in Celsius).
<pre>max_time_pred</pre>	Maximum time to predict the response variable.
confidence_int	erval
	Confidence level for the confidence and prediction intervals around the predictions (default 0.95).
by	Number of points (on the time scale) to smooth the statistical intervals around the predictions.
reparameterisa	tion
	Use alternative parameterisation of the one-step model which aims to reduce correlation between k1 and k2.
zero_order	Set kinetic order, k3, to zero (straight lines).
	Further arguments to passed to minpack.lm.

Fit the one-step Šesták–Berggren kinetic (non-linear) model using accelerated stability data that has been stored in an R data frame. Additionally, predictions of the mean at each tested temperature are returned, including associated confidence and prediction intervals, which can be subsequently visualised with step1_plot_pred(), step1_plot_CI(), step1_plot_PI() and step1_plot_T(). Kinetic parameters (k1, k2 and, if used, k3) are retained in the model even if one or more of these parameters turn out to be non-significant. Further arguments relating to model fitting, such as setting lower bounds for one or more model parameters, may be passed.

Value

An SB class object, a list including the following elements:

- *fit* The non-linear fit.
- data The data set.
- prediction A data frame containing the predictions with the confidence and prediction intervals.
- *user_parameters* List of users input parameters which is utilised by other functions in the package.
- sample_coefficients A matrix containing the coefficients sampled during bootstrapping.

Examples

```
#load antigenicity and potency data.
data(antigenicity)
data(potency)
```

#Basic use of the step1_down function with C column defined.

```
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time", C = "Celsius", draw = 5000)
#Basic use of the step1_down function with K column defined & Validation data segmented out.
fit2 <- step1_down(data = antigenicity, y = "conc", .time = "time", K = "K",
validation = "validA", draw = 5000)
#When zero_order = FALSE, the output suggests using zero_order = TRUE for Potency dataset.
fit3 <- step1_down(data = potency, y = "Potency", .time = "Time", C = "Celsius",
    reparameterisation = FALSE, zero_order = TRUE, draw = 5000)
#reparameterisation is TRUE.
fit4 <- step1_down(data = antigenicity, y = "conc", .time = "time", C = "Celsius",
    reparameterisation = TRUE, draw = 5000)
#Use a custom lower bound for k1 (default is 0).
fit5 <- step1_down(data = potency, y = "Potency", .time = "Time", C = "Celsius",
    reparameterisation = TRUE, zero_order = TRUE, draw = 5000, lower = c(-Inf, 0, 0))</pre>
```

step1_down_basic Basic version Step1 Down Model

Description

Quickly fit the one-step Šesták–Berggren kinetic model.

Usage

```
step1_down_basic(
   data,
   y,
   .time,
   K = NULL,
   C = NULL,
   validation = NULL,
   parms = NULL,
   reparameterisation = FALSE,
   zero_order = FALSE,
   ...
)
```

Arguments

data	Dataframe containing accelerated stability data (required).
У	Name of decreasing variable (e.g. concentration) contained within data (required).
.time	Time variable contained within data (required).
К	Kelvin variable (numeric or column name) (optional).

С	Celsius variable (numeric or column name) (optional).	
validation	Validation dummy variable, the column must contain only 1s and 0s, 1 for validation data and 0 for fit data. (column name) (optional).	
parms	Starting values for the parameters as a list - k1, k2, k3, and c0.	
reparameterisation		
	Use alternative parameterisation of the one-step model which aims to reduce correlation between $k1$ and $k2.$	
zero_order	Set kinetic order, k3, to zero (straight lines).	
	Further arguments to passed to minpack.lm.	

Fit the one-step Šesták–Berggren kinetic (non-linear) model using accelerated stability data that has been stored in an R data frame. Only the model fit object is returned and a summary of the model fit is printed in the console, allowing for more rapid testing than step1_down(). Kinetic parameters (k1, k2 and, if used, k3) are retained in the model even if one or more of these parameters turn out to be non-significant. Further arguments relating to model fitting, such as setting lower bounds for one or more model parameters, may be passed.

Value

The fit object

Examples

```
#load antigenicity and potency data.
data(antigenicity)
data(potency)
#Use of the step1_down_basic function with C column defined.
fit1 <- step1_down_basic(data = antigenicity, y = "conc", .time = "time", C = "Celsius")</pre>
#Basic use of the step1_down_basic function with K column defined & Validation data segmented out.
fit2 <- step1_down_basic(data = antigenicity, y = "conc", .time = "time", K = "K",
validation = "validA")
#When zero_order = FALSE, the output suggests using zero_order = TRUE for Potency dataset.
fit3 <- step1_down_basic(data = potency, y = "Potency", .time = "Time",C = "Celsius",</pre>
 reparameterisation = FALSE, zero_order = TRUE)
#reparameterisation is TRUE.
fit4 <- step1_down_basic(data = antigenicity, y = "conc", .time = "time",C = "Celsius",</pre>
 reparameterisation = TRUE)
#Use a custom lower bound for k1 (default is 0).
fit5 <- step1_down_basic(data = potency, y = "Potency", .time = "Time", C = "Celsius",
 reparameterisation = TRUE, zero_order = TRUE, lower = c(-Inf, 0, 0))
```

step1_down_rmse

Description

Calculate Root Mean Square Error (RMSE) for the one-step Šesták-Berggren kinetic model.

Usage

```
step1_down_rmse(
   data,
   y,
   .time,
   K = NULL,
   C = NULL,
   parms,
   reparameterisation = FALSE
)
```

Arguments

data	Dataframe containing accelerated stability data (required).	
У	Name of decreasing variable (e.g. concentration) contained within data (required).	
.time	Time variable contained within data (required).	
К	Kelvin variable (numeric or column name) (optional).	
С	Celsius variable (numeric or column name) (optional).	
parms	Values for the parameters as a list - k1, k2, k3, and c0. If multiple are provided all combinations will be used (required).	
reparameterisation		
	Use alternative parameterisation of the one-step model which aims to reduce	

Details

Calculate RMSE for the one-step Šesták-Berggren kinetic (non-linear) model using user provided parameters.

Value

A data frame containing one row for each RMSE calculation

correlation between k1 and k2.

Examples

```
#load antigenicity and potency data.
data(antigenicity)
data(potency)
#Basic use of the step1_down_rmse function with C column defined.
rmse1 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", parms = list(c0 = c(96,98,100), k1 = c(42,45),
k2 = c(12000,12500), k3 = c(8,9,10)))
#Basic use of the step1_down_rmse function with K column defined.
rmse2 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
K = "K", parms = list(c0 = c(98), k1 = c(42,45), k2 = c(12500), k3 = c(8,9)))
#reparameterisation is TRUE.
rmse3 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", parms = list(c0 = c(100,95), k1 = c(2,2.5), k2 = c(12000,13000),
k3 = c(9,10)), reparameterisation = TRUE)
```

step1_plot_CI Plot Confidence Intervals

Description

Plot the stability data and visualise the predictions with confidence intervals.

Usage

```
step1_plot_CI(
   step1_down_object,
   xname = NULL,
   yname = NULL,
   xlim = NULL,
   ylim = NULL,
   ribbon = FALSE
)
```

Arguments

step1_down_object

	The fit object from the step1.down function (required).
xname	Label for the x-axis (optional).
yname	Label for the y-axis (optional).
xlim	x-axis limits (optional).
ylim	y-axis limits (optional).
ribbon	Add shade to confidence intervals (optional).

10

Use the fit object obtained from the step1.down function to plot the data and visualise the predictions with confidence intervals applied. There is an option to view the confidence intervals as a ribbon. The confidence interval value is chosen in the step1.down function.

Value

Plot of stability data with prediction curves and confidence intervals.

Examples

```
#Load antigenciity data
data(antigenicity)
#Run step1.down fit
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", max_time_pred = 3, confidence_interval = 0.9, validation = "validA")
#Plot raw data with prediction curves and confidence intervals.
step1_plot_CI(step1_down_object = fit1, xlim = NULL, ylim = NULL,
xname = "Time (Years)", yname = "Concentration", ribbon = TRUE)
#Plot raw data with prediction curves and confidence intervals.
#Also limit x-axis to values between 0 and 1.5 and limit y-axis to values between 0 and 105.
step1_plot_CI(step1_down_object = fit1, xlim = c(0,1.5), ylim = c(0,105),
xname = "Time (Years)", yname = "Concentration", ribbon = TRUE)
```

step1_plot_desc Plot Stability Data

Description

Plot raw accelerated stability data.

Usage

```
step1_plot_desc(
   data,
   y,
   .time,
   K = NULL,
   C = NULL,
   validation = NULL,
   vaname = NULL,
   yname = NULL,
   xlim = NULL,
   ylim = NULL
)
```

Arguments

data	Dataframe containing accelerated stability data.
У	Name of decreasing variable (e.g. concentration) contained within data
.time	Time variable contained within data.
К	Kelvin variable (numeric or column name) (optional).
С	Celsius variable (numeric or column name) (optional).
validation	Validation dummy variable (column name) (optional).
xname	Label for the x-axis (optional).
yname	Label for the y-axis (optional).
xlim	x-axis limits (optional).
ylim	y-axis limits (optional).

Details

Plot the raw accelerated stability data by selecting the columns - response, time and temperature.

Value

Plot of raw accelerated stability data.

Examples

```
#Load example datasets
data(antigenicity)
data(potency)
step1_plot_desc(data=antigenicity, y="conc", .time="time", C = "Celsius")
step1_plot_desc(data=potency, y="Potency", .time="Time", C = "Celsius", xlim=c(0,10), ylim=c(0,12))
```

step1_plot_diagnostic Create Diagnostic Plots

Description

Generate residual diagnostic plots from a step1_down fit.

Usage

```
step1_plot_diagnostic(step1_down_object, bins = 7, residuals = "classic")
```

step1_plot_PI

Arguments

<pre>step1_down_object</pre>			
	The fit object from the step1_down function (required).		
bins	The number of bins in the Histogram plot (default 7).		
residuals	The type of residuals to plot classic/studentized/standardized (default classic).		

Details

Use the fit object obtained from the step1_down function to plot the residual diagnostic plots, assess the quality of fit and search for anomalies. Change the type of Residuals assessed. Plots created are: Residuals Histogram, QQ Plot of Residuals, Observed Vs Predicted results, Residuals Vs Predicted results and Residuals By Time.

Value

A list containing the five ggplot2 plots.

Examples

```
#load antigenicity data
data(antigenicity)
#run step1_down fit
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", max_time_pred = 3)
#plot diagnostic plots to asses the fit
step1_plot_diagnostic(fit1)</pre>
```

step1_plot_PI Plot Prediction Intervals

Description

Plot the stability data and visualise the predictions with prediction intervals.

Usage

```
step1_plot_PI(
   step1_down_object,
   xname = NULL,
   yname = NULL,
   xlim = NULL,
   ylim = NULL,
   ribbon = FALSE
)
```

Arguments

<pre>step1_down_obj</pre>	ect
	The fit object from the step1.down function (required).
xname	Label for the x-axis (optional).
yname	Label for the y-axis (optional).
xlim	x-axis limits (optional).
ylim	y-axis limits (optional).
ribbon	Add shade to prediction intervals (optional).

Details

Use the fit object obtained from the step1.down function to plot the stability data and visualise the predictions with prediction intervals applied. There is an option to view the prediction intervals as a ribbon. The prediction interval value is chosen in the step1.down function.

Value

Plot of stability data with prediction curves and prediction intervals.

Examples

```
#Load antigenicity data
data(antigenicity)
#Run step1.down fit
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", max_time_pred = 3)
#Plot raw data with prediction curves and prediction intervals.
step1_plot_PI(step1_down_object = fit1, xlim = NULL, ylim = NULL,
xname = "Time (Years)", yname = "Concentration", ribbon = TRUE)
#Plot raw data with prediction curves and confidence intervals.
#Also limit x-axis to values between 0 and 1.5 and limit y-axis to values between 0 and 105.
step1_plot_PI(step1_down_object = fit1, xlim = c(0,1.5), ylim = c(0,105),
```

```
xname = "Time (Years)", yname = "Concentration", ribbon = TRUE)
```

step1_plot_pred Plot Model Predictions

Description

Plot the stability data and visualise the predictions.

step1_plot_T

Usage

```
step1_plot_pred(
   step1_down_object,
   xname = NULL,
   yname = NULL,
   xlim = NULL,
   ylim = NULL
)
```

Arguments

<pre>step1_down_object</pre>	
The fit objec	t from the step1.down function (required).

xname	Label for the x-axis (optional).
yname	Label for the y-axis (optional).
xlim	x-axis limits (optional).
ylim	y-axis limits (optional).

Details

Use the fit object from the step1.down function to plot the accelerated stability data and visualise the predictions.

Value

Plot of accelerated stability data with prediction curves.

Examples

```
#Load antigenicity data
data(antigenicity)
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", max_time_pred = 3)
step1_plot_pred(step1_down_object = fit1, xlim = c(0,1.5), ylim = c(0,105),
    xname = "Time (Years)", yname = "Concentration")</pre>
```

step1_plot_T Focus on Temperature

Description

Plot the stability data and visualise the predictions with focus on one temperature.

Usage

```
step1_plot_T(
   step1_down_object,
   focus_T = NULL,
   yname = NULL,
   ylim = NULL,
   ylim = NULL,
   ribbon = FALSE
)
```

Arguments

step1_down_object

	The fit object from the step1.down function (required).
focus_T	Selected temperature to highlight on the plot.
xname	Label for the x-axis (optional).
yname	Label for the y-axis (optional).
xlim	the x-axis limits (optional).
ylim	the y-axis limits (optional).
ribbon	adds shade to confidence and prediction intervals (optional).

Details

Plot the stability data and visualise the predictions focusing on one chosen temperature with confidence and prediction intervals.

Value

ggplot2 object with focus on chosen temperature.

Examples

```
#Load potency data
data(potency)
#Run step1_down fit
fit1 <- step1_down(data = potency, y = "Potency", .time = "Time",
C = "Celsius", zero_order = TRUE)</pre>
```

```
#Plot raw data with prediction curves with focus on temperature in dataset.
#Also limit x-axis to values between 0 and 10 and limit y-axis to values between 0 and 12.
step1_plot_T(fit1, focus_T = 5,ribbon = TRUE, xlim = c(0,10), ylim = c(0,12),
    xname = "Time (Month)", yname = "Potency")
```

```
#Plot raw data with prediction curves with focus on temperature not in dataset.
#Also limit x-axis to values between 0 and 10 and limit y-axis to values between 0 and 12.
step1_plot_T(fit1, focus_T = -10,ribbon = TRUE, xlim = c(0,10), ylim = c(0,12),
```

16

```
xname = "Time (Months)", yname = "Potency")
```

step1_sample_mvt Sample the Multivariate t Distribution

Description

Take a selected number of samples from the multivariate t distribution (mvt).

Usage

```
step1_sample_mvt(
   data,
   y,
   .time,
   K = NULL,
   C = NULL,
   validation = NULL,
   draw,
   parms = NULL,
   reparameterisation = FALSE,
   zero_order = FALSE,
   ...
)
```

Arguments

data	Dataframe containing accelerated stability data (required).	
У	Name of decreasing variable (e.g. concentration) contained within data (required).	
.time	Time variable contained within data (required).	
К	Kelvin variable (numeric or column name) (optional).	
С	Celsius variable (numeric or column name) (optional).	
validation	Validation dummy variable (column name) (optional).	
draw	Number of samples to draw from mvt (required).	
parms	Starting values for the parameters as a list - k1, k2, k3, and c0 (optional).	
reparameterisation		
	Use alternative parameterisation of the one-step model which aims to reduce correlation between k1 and k2.	
zero_order	Set kinetic order, k3, to zero (straight lines).	
	Further arguments to passed to minpack.lm.	

Using the provided data the function creates a fit of the Šesták–Berggren kinetic model and then draws a selected number of samples from the mvt of the model parameters.

Value

A matrix containing parameter draws from the mvt distribution.

Examples

```
#load antigenicity data.
data(antigenicity)
```

```
#Basic use of the step1_sample_mvt function with C column defined and 1000 draws.
sample1 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", draw = 1000)
```

```
#Basic use of the step1_sample_mvt function with K column defined and 50000 draws
sample2 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
K = "K", draw = 50000)
```

```
#reparameterisation is TRUE and 10000 draws.
sample3 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", reparameterisation = TRUE, draw = 10000)</pre>
```

Index

* dataset antigenicity, 2 potency, 4 ${\tt antigenicity, 2}$ excursion, 3potency, 4 step1_down, 5 step1_down_basic,7 step1_down_rmse, 9 step1_plot_CI, 10 step1_plot_desc, 11 step1_plot_diagnostic, 12 $\texttt{step1_plot_PI}, \texttt{13}$ step1_plot_pred, 14 step1_plot_T, 15 step1_sample_mvt, 17